Lecture 3: Bayesian inference in practice

Ben Lambert¹
ben.lambert@some.ox.ac.uk

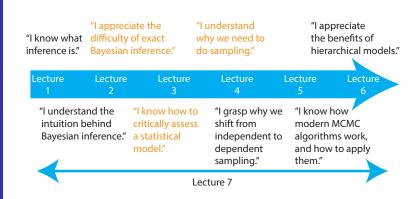
¹Somerville College University of Oxford

Wednesday 9th November, 2016

Lecture outcomes

- Understand the importance of posterior predictive checks in model building.
- 2 Appreciate the difficulty of exact Bayesian inference.
- Understand what is meant by sampling and how it can provide insight into a distribution.
- Appreciate some of the difficulty associated with independent sampling.

Our progress in the overall course

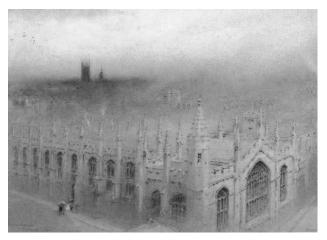


- 1 Previous lecture recap
- 2 Posterior predictive checking
- 3 The difficulty of exact Bayes revisited
- 4 Potential solutions
- Sampling

Modelling rainfall in Oxford

Example:

• Measure the average rainfall by month in Oxford.

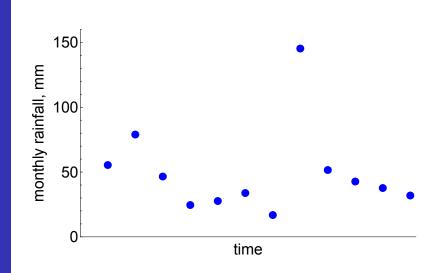


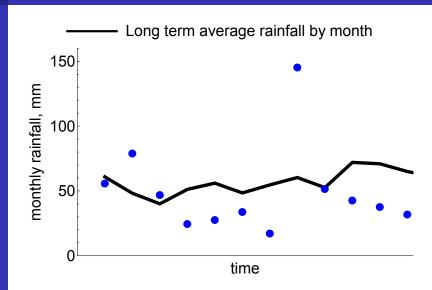
Modelling rainfall in Oxford

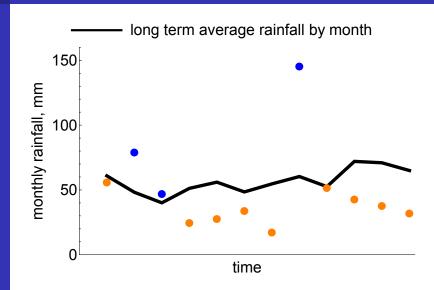
Scenario 1: modelling Oxford rainfall for farmers

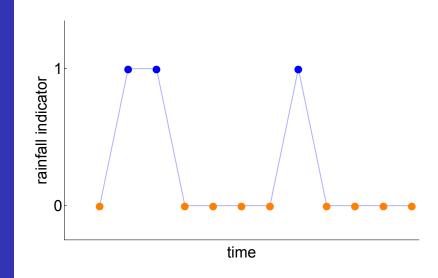
- Government needs a model for rainfall to help plan the budget for farmers' subsidies over the next 5 years.
- Crop yields depend on rainfall following typical season patterns.
- If rainfall is persistently above normal for a number of months ⇒ yields↓
- Assume crop more tolerant to drier spells.

⇒ create a binary variable equal to 1 if rainfall above average; 0 otherwise.









Choosing a likelihood

Building a model to explain $X_t \in (0,1)$; whether the rainfall in one month exceeds a long term monthly average.

- **Independence:** the value of X_t in month t is independent of that in the previous months.
- **Identical distribution:** all months in our sample have the same probability (θ) of rainfall exceeding long-term average.

Choosing a likelihood

Conditions:

- $X_t \in (0,1)$ is a **discrete** random variable.
- Assume **independence** among X_t .
- Assume **identical distribution** for X_t ; probability of rainfall exceeding monthly average is θ .
- \implies **Bernoulli** likelihood for each **individual** X_t .

The Bernoulli likelihood

 X_t measures whether or not the rainfall in a month t is above a long term average. A Bernoulli likelihood for a single X_t has the form:

$$p(X_t|\theta) = \theta^{X_t} (1-\theta)^{1-X_t} \tag{1}$$

But what does this mean? Work out the probabilities given θ :

•
$$p(X_t = 1|\theta) = \theta^1(1-\theta)^0 = \theta$$

•
$$p(X_t = 0|\theta) = \theta^0(1-\theta)^1 = 1-\theta$$

Question: what is the difference between a likelihood and a sampling/probability distribution?

Answer: they are given by the same object, but under different conditions. Consider a single X_t :

$$L(\theta|X_t) = \rho(X_t|\theta) \tag{2}$$

- If hold θ constant \Longrightarrow sampling distribution $X_t \sim p(X_t|\theta)$.
- If hold X_t constant \Longrightarrow likelihood distribution $\theta \sim L(\theta|X_t)$.
- In Bayes' rule we vary $\theta \implies$ we use the **likelihood** interpretation.

Sampling distribution: hold **parameter** constant, for example $\theta = 0.75$:

$$Pr(X_t = 1 | \theta = 0.75) = 0.75^1 (1 - 0.75)^0 = 0.75$$

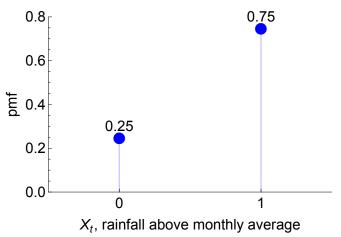
 $Pr(X_t = 0 | \theta = 0.75) = 0.75^0 (1 - 0.75)^1 = 0.25$

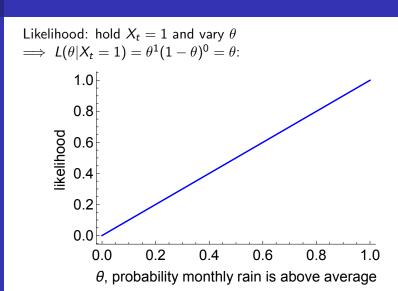
Likelihood distribution: hold **data** constant for example consider $X_t = 1$:

$$L(\theta|X_t=1) = \theta^1(1-\theta^0) = \theta \tag{3}$$

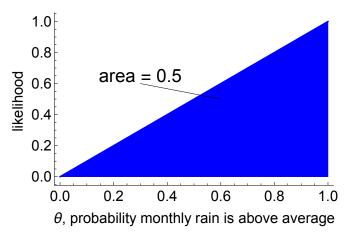
Therefore here the sampling distribution is **discrete** whereas the likelihood distribution is **continuous**.

Sampling distribution: hold θ constant and vary the data X_t \Longrightarrow valid probability distribution. For example for $\theta = 0.75$:





Likelihood: hold $X_t = 1$ and vary θ . Not a valid probability distribution!



The overall likelihood

Now assuming that we have a series of $X = (X_1, X_2, ..., X_T)$. Question: How do we obtain the full likelihood? By independence:

$$p(X_{1}, X_{2}, ..., X_{T} | \theta) = \theta^{X_{1}} (1 - \theta)^{1 - X_{1}} \times \theta^{X_{2}} (1 - \theta)^{1 - X_{2}} \times ...$$
$$\times \theta^{X_{T}} (1 - \theta)^{1 - X_{T}}$$
$$= \theta^{\sum X_{t}} (1 - \theta)^{T - \sum X_{t}}$$

So if we suppose rain exceeded average in 4/12 months \implies

$$L(\theta|X) = \theta^4 (1 - \theta)^8 \tag{4}$$

The intuition behind Bayesian inference

Bayes' rule:

$$p(\theta|X) = \frac{p(X|\theta) \times p(\theta)}{p(X)}$$
 (5)

 \Longrightarrow

$$p(\theta|X) \propto \underbrace{p(X|\theta)}_{\text{likelihood}} \times \underbrace{p(\theta)}_{\text{prior}}$$
 (6)

The posterior is a essentially a weighted (geometric) average of the likelihood and prior.

The intuition behind Bayesian inference

Suppose we obtain 4/12 months where rainfall exceeds long term average. Varying the prior:

Defined:

"The probability distribution for a new data sample \tilde{X} given our current data X."

We obtain this by the following recipe:

1 Sample a value of θ_i from posterior:

$$\theta_i \sim p(\theta|X)$$
 (7)

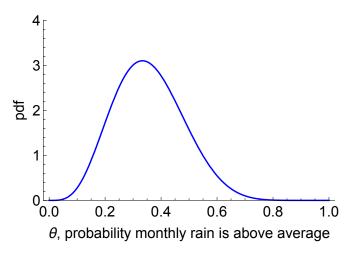
where X is the current data.

② Sample a value of \hat{X}_i from the sampling distribution conditional on θ_i ;

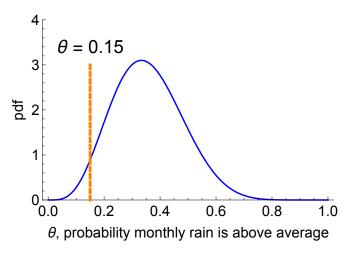
$$\tilde{X}_i \sim p(\tilde{X}|\theta_i)$$
 (8)

3 Graph histogram of \tilde{X}_i values \implies posterior predictive distribution.

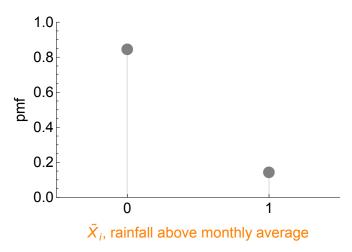
Suppose we have the posterior (4/12 months $X_t = 1$):



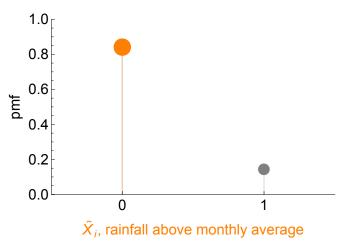
Draw a sample from this distribution, e.g. obtain $\theta_i = 0.15$.



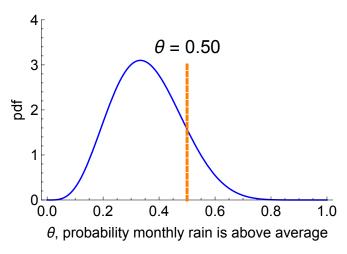
Draw a value \tilde{X}_i from sampling distribution defined by $\theta_i = 0.15$:



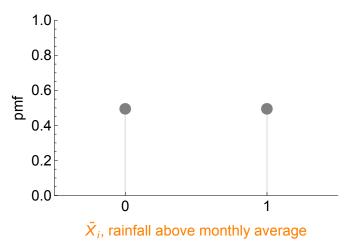
And obtain for example $\tilde{X}_i = 0$.



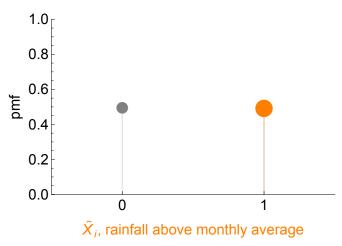
Draw another sample and obtain $\theta_i = 0.50$.



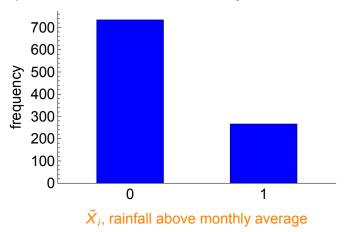
Draw \tilde{X}_i from sampling distribution defined by $\theta_i = 0.50$:



And obtain for example $\tilde{X}_i = 1$.



Repeating this process 1,000 times, and draw histogram of \tilde{X}_i : \Longrightarrow predict $\tilde{X}_i = 0$ is about 2.5 \times as likely as $\tilde{X}_i = 1$.



Posterior predictive distribution: intuition

The variation seen in posterior predictive samples comes from two sources:

- Epistemic uncertainty (posterior): due to our uncertainty over the parameter's true value.
- Ontological variability (likelihood): due to inherent stochasticity in the system.

Note: can be debated philosophically (for example, the sampling distribution could also be considered also a statement of our ignorance), but we don't want to get into that here.

Prior and posterior predictive definitions

Posterior predictive distribution:

"The probability distribution for a new data sample \tilde{X} given our current data X and our choice of likelihood and prior."

Prior predictive distribution:

"The probability distribution for the data X given our choice of likelihood and prior."

Prior and posterior predictive distributions

How to obtain each distribution?

Posterior predictive:

- $\theta_i \sim p(\theta|X)$; i.e. the **posterior**.
- $\tilde{X}_i \sim p(\tilde{X}|\theta_i)$; i.e. the sampling distribution.

Prior predictive:

- $\theta_i \sim p(\theta)$; i.e. the **prior**.
- $X_i \sim p(X|\theta_i)$; i.e. the sampling distribution.

- 1 Previous lecture recap
- 2 Posterior predictive checking
- The difficulty of exact Bayes revisited
- 4 Potential solutions
- Sampling

The premise behind posterior predictive checks

If model fits data \implies :

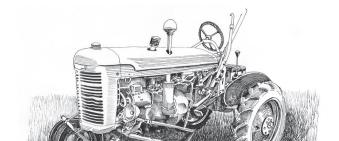
data simulated from posterior predictive ~ real data distribution

- **Question:** but what do we mean by \sim here?
- **Answer:** there are many characteristics of the data which we can choose to test similarity.

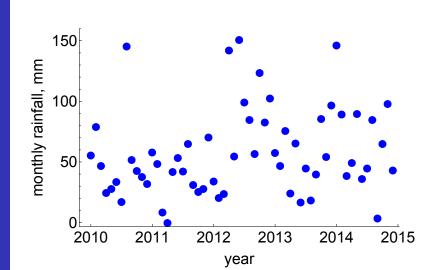
The scenario revisited

Scenario 1: rainfall modelling for farmers

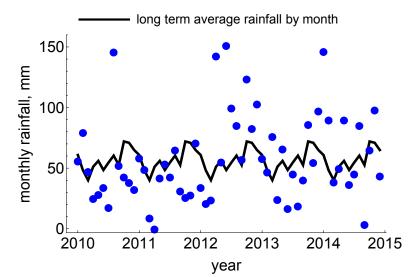
- Government needs a model for rainfall to help plan the budget for farmers' subsidies over the next 5 years.
- Crop yields depend on rainfall following typical season patterns.
- If rainfall is persistently above normal for a number of months ⇒ yields↓



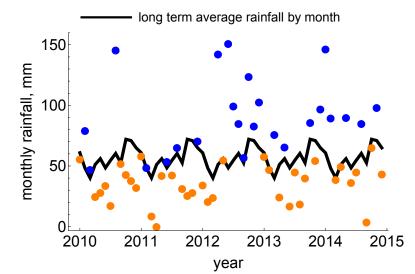
The data (from the Met Office):

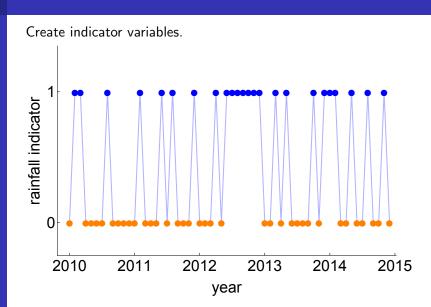


The data + monthly average.



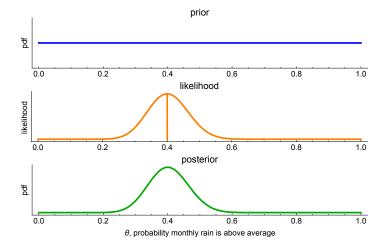
Indicate whether rain is above (blue) or below (orange) average.





Scenario 1: inference

Over sample period we find 24/60 months where rainfall exceeds long-term average \implies

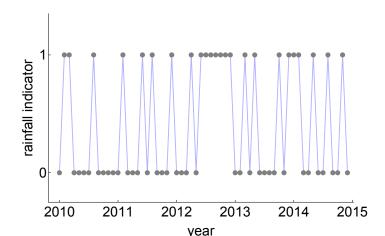


Scenario 1: key question

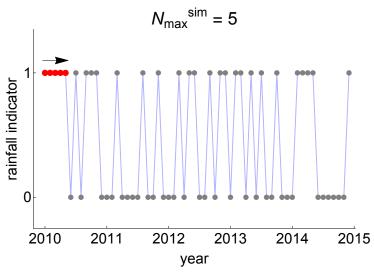
- Crop yields depend on whether rainfall is persistently above average.
- Key question: does the model allow for sufficient persistence in process?
- **Answer:** find the length of maximum run of consecutive $X_t = 1$ in real data. Then:
 - Draw a sample data series 60 months long from the posterior predictive distribution.
 - Find maximum run of consecutive $X_t=1$ in simulated series.
- Repeat the above steps a number of times.
- Compare real maximum run length with distribution of simulated run lengths.

Scenario 1: maximum length run of wet months in real data

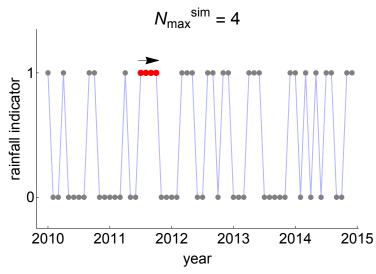
- Start with real data.
- Find maximum run of $X_t = 1$ (rainfall above average).



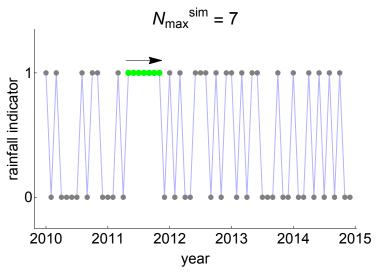
Repeating for data simulated from the posterior predictive.



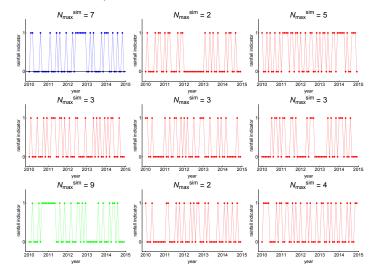
Another sample.



A further sample.

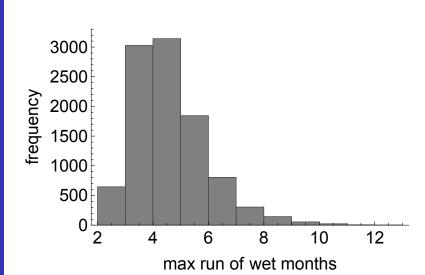


A number of samples.



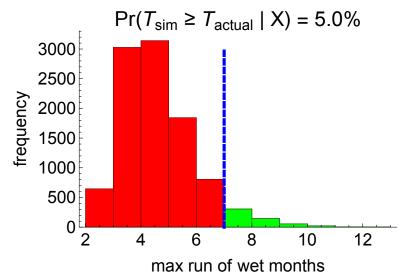
Scenario 1: p value

Repeat 10,000 times; each time recording maximum run length.



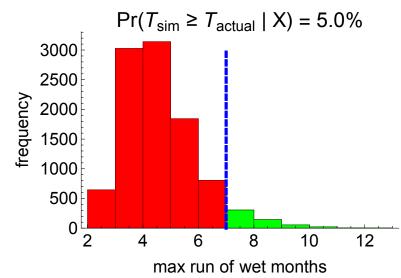
Scenario 1: p value

Find percentage of times where simulated exceeds real.



Scenario 1: p value

Therefore conclude that model is not fit for purpose!



Using posterior predictive checks to assess model

The premise

- Generate simulated data from posterior predictive distribution $\tilde{X} \sim p(\tilde{X}|X)$.
- Compare a summary measure T for the actual versus simulated data sets.
- In our example T was the maximum run of abnormally wet months
- If a significant fraction of replicates have:
 - $T_{sim} > T_{actual}$; runs of abnormally wet months **longer** than the real data.
 - $T_{sim} < T_{actual}$; runs of abnormally wet months **shorter** than the real data.
- ⇒ model misfit!

Scenario 1: Bayesian p values

Definition

• After criterion is set (T) want to summarise the performance of posterior predictive samples. \Longrightarrow Bayesian p value, calculated by:

$$p = Pr(T(X_{sim}, \theta|X) > T(X_{actual}))$$
 (9)

Where $T(X_{sim}, \theta)$ is estimated for a large number of posterior predictive simulations.

- Different to classical *p* values:
 - Bayesian p values account for uncertainty in θ .
 - Either $p \sim 0$ or $p \sim 1$ indicate misfit.

Scenario 1: summary

- (Perhaps due to the effects of longer-run weather systems.)
- Need another model that allows for persistence in monthly rainfall (for example, an underlying AR1 process).

Posterior predictive model checking: next scenario

Scenario 2: integrity of a dam

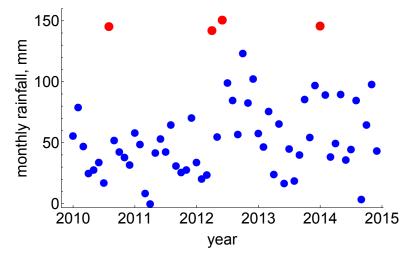
- Work as analyst for a hydroelectric dam.
- Dam has risk of overflowing if rainfall exceeds 140mm in any given month.
- However, water level in reservoir can be controlled by opening small gates in dam.
- Dam engineers need a model for monthly rainfall amount to help plan such water releases.

Scenario 2: data



Scenario 2: data

4/60 months with rainfall exceeding 140mm.



Scenario 2: model

- Y_t represents the rainfall in month t.
- Likelihood:

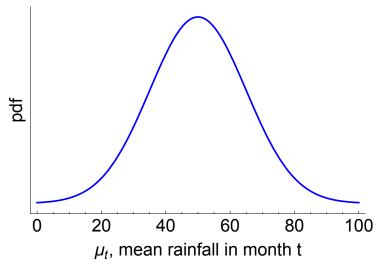
$$Y_t \sim N(\mu_t, \sigma)$$
 (10)

where

- μ_t is the long term average rainfall for month t.
- σ is the standard deviation in rainfall amount.

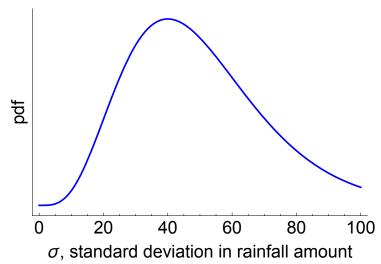
Scenario 2: priors

Each $\mu_t \sim \textit{N}(50,15)$ (independent and identically distributed).

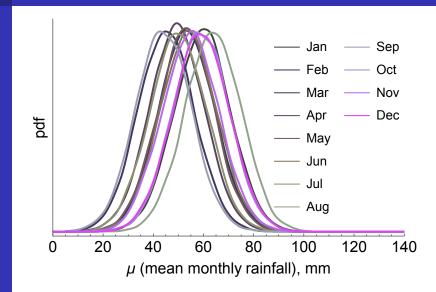


Scenario 2: priors

Assume $\sigma \sim \text{Gamma}(5, 0.1)$, and **independent** of μ_t .



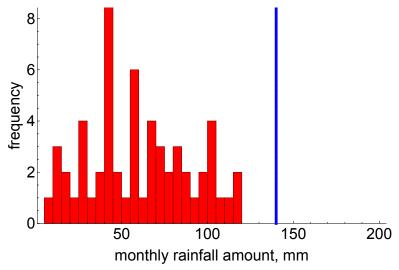
Scenario 2: posterior estimates of mean parameter



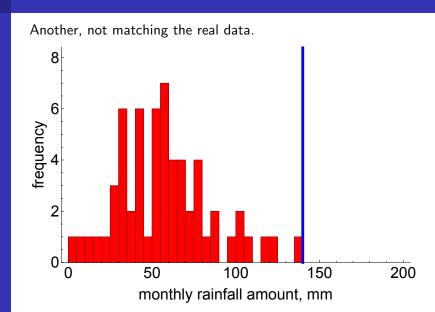
- Model must recapitulate the occurrence of 140mm+ rainfall days.
- Real occurrence was 4/60 months.
- Do the following:
 - Generate 5 years of data from posterior predictive distribution.
 - Count the number of months where rainfall exceeds 140mm.
- Repeat the above a large number of times.

Scenario 2: example generated series

An example series from the posterior predictive distribution.

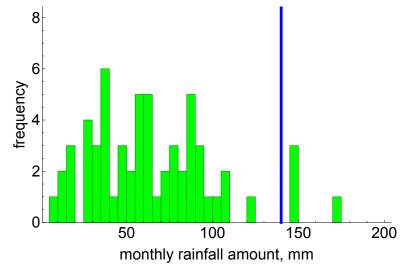


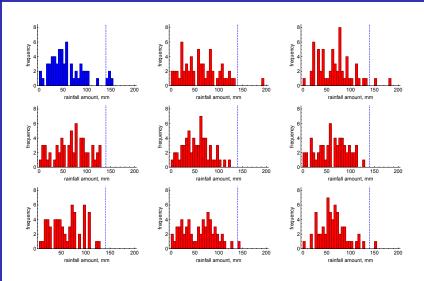
Scenario 2: example generated series



Scenario 2: example generated series

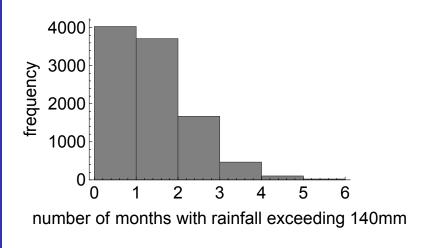
Yet another one; this time matching the real data.





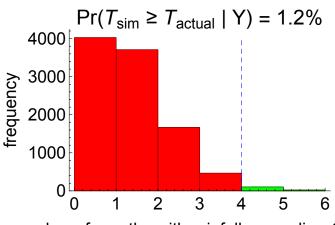
Scenario 2: p value

Repeat 10,000 times, and calculate p value.



Scenario 2: p value

Again model not fit for purpose!

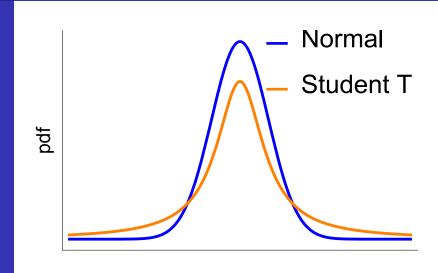


number of months with rainfall exceeding 140mm

Scenario 2: solutions

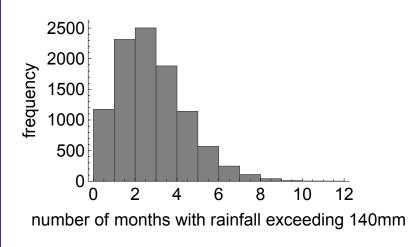
- Posterior predictive checks suggest that a normal sampling model does not allow sufficient variation in rainfall.
- Specifically a normal model does not give enough weight to its tails.
- replace normal likelihood with the more robust T distribution.

Scenario 2: Normal versus Student T



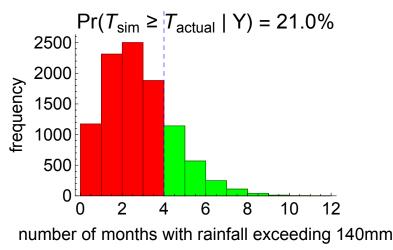
Scenario 2: Student T posterior predictive check

Much greater range in months with extreme rainfall.



Scenario 2: Student T posterior predictive check

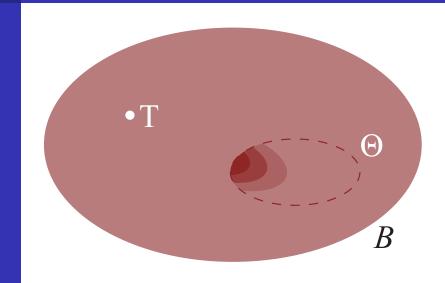
Student T model much better fit to situation.



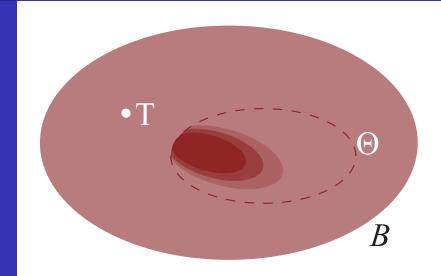
Scenario 2: summary

- Dam integrity depends on upper extremes of rainfall amount.
- As such, created a model for rainfall amount.
- T_{actual} = 4 was the number of times rainfall exceeded 140mm over a period of 5 years.
- Posterior predictive data had T_{sim} < 4 for about 99% of simulations ⇒ model misfit!
- Using a more robust sampling distribution (here a Student T) produced months where rainfall exceeds 140mm much more in accordance with data.

Posterior predictive checks: shifting the boundary of the Small world



Posterior predictive checks: shifting the boundary of the Small world



- Previous lecture recap
- 2 Posterior predictive checking
- 3 The difficulty of exact Bayes revisited
- Potential solutions
- Sampling

The denominator in Bayes' rule

Bayes' rule for inference:

$$p(\theta|X) = \frac{p(X|\theta) \times p(\theta)}{p(X)} \tag{11}$$

And the denominator is found by integrating the numerator:

$$p(X) = \int_{\Theta} p(X|\theta) \times p(\theta) d\theta$$
 (12)

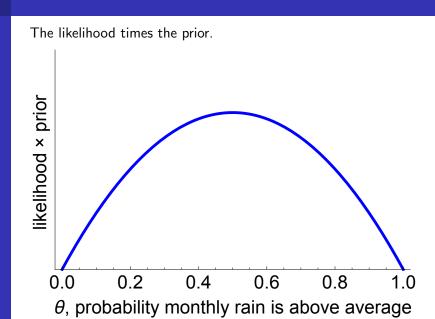
Remember:

- Before data: the denominator is the prior predictive distribution.
- After data: the denominator is just a number, that normalises the numerator.
- In practice difficult to calculate either exactly!

Scenario 1 revisited

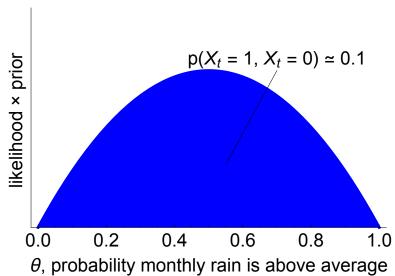
- X_t measures whether or not rainfall is above that month's long term average.
- Suppose we consider two months where $X_t = 0$ and $X_{t+1} = 1$.
- Model:
 - Bernoulli likelihood: $p(\theta|X_t = 0, X_{t+1} = 1) = \theta(1 \theta)$.
 - Uniform prior: $p(\theta) = 1$, for $\theta \in (0,1)$.
 - \Longrightarrow likelihood \times prior = $\theta(1-\theta)$.

Scenario 1: denominator



Scenario 1: denominator

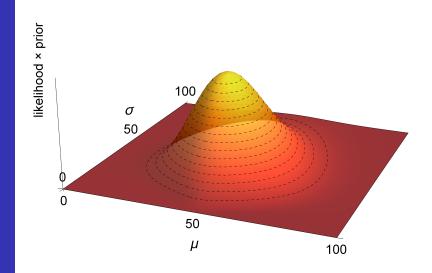
Finding the denominator.



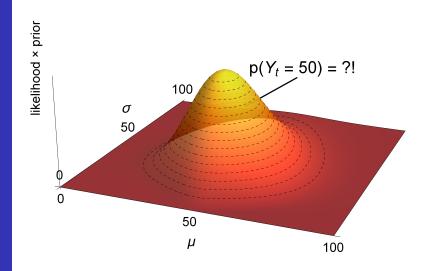
Scenario 2: denominator

- Y_t measures rainfall amount in month t.
- Consider a single month where $Y_t = 50$ mm.
- Model:
 - Normal likelihood for Y_t , which has two parameters μ_t (mean) and σ (standard deviation).
 - Normal prior for μ_t .
 - (Independent) Gamma prior for σ .
 - \implies likelihood \times prior = height of 3D surface!

Scenario 2: denominator



Scenario 2: denominator



Scenario 2: revisited

- Suppose we could calculate $p(Y_t = 50) \implies$ find posterior, $p(\mu_t, \sigma | Y_t = 50)$.
- Want to calculate posterior mean for μ_t . Question: how do we do this? **Answer:** integrate (again).

$$E(\mu_t|Y_t = 50) = \int_0^\infty \int_{-\infty}^\infty \mu_t \times p(\mu_t, \sigma|Y_t = 50) d\mu_t d\sigma$$
 (13)

Again difficult for computers!

Difficulty of exact Bayesian inference: summary

- Bayes' rule requires us to calculate the denominator.
- The denominator is found by integrating the numerator.
- For models with more than about 20 parameters this integration is infeasible.
- Even if we could find exact posterior we often want summary measures of the posterior; for example, the mean or variance.
- These summaries require us to do more difficult integrals!

- 1 Previous lecture recap
- 2 Posterior predictive checking
- 3 The difficulty of exact Bayes revisited
- 4 Potential solutions
- Sampling

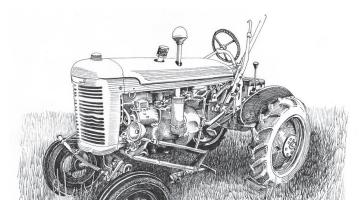
Conjugate priors

Premise:

- Choose a likelihood and prior such that the posterior is easy to find.
- Specifically choose a prior to be within a family of distributions such that the posterior is from the same family.

Scenario 1: conjugate priors

- X_t indicates whether rainfall is above average.
- Suppose we find 4/12 months where rainfall exceeds average.
- Choose a Beta prior for Bernoulli likelihood.
- $\bullet \implies$ posterior is also Beta.



Scenario 1: conjugate priors

Scenario 2: conjugate priors

- Model rainfall amount Y_t in month t.
- Assumed a Normal likelihood.
- Allowed the mean rainfall amount μ_t to vary by month.
- Assumed no seasonality in standard deviation of rainfall amount σ .
- ⇒ there are no conjugate priors here!

Therefore clear that conjugate priors are not going to be a panacea!

Another solution: discrete Bayes' rule

- To calculate the denominator we need to do an integral, if parameters are continuous.

$$p(X) = \sum_{i=1}^{p} p(X|\theta_i) \times p(\theta_i)$$
 (14)

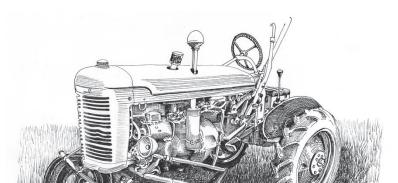
- In general this sum is more tractable than an integral.
- **Question:** can we use this to help us with continuous parameter problems?

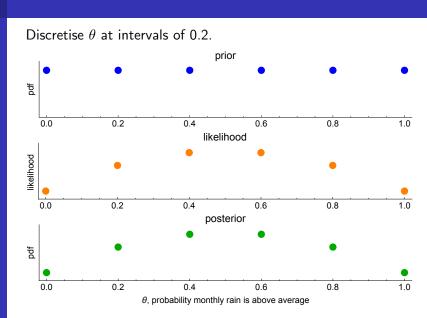
Discretised Bayesian inference

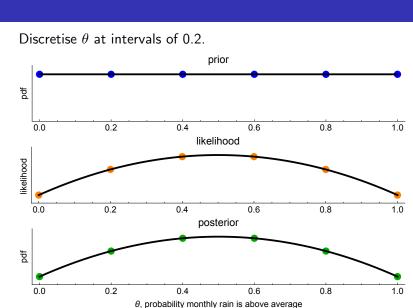
Method:

- Convert **continuous** parameter into *k* **discrete** values.
- Use discrete version of Bayes' rule.
- As $k \to \infty$ discrete posterior \to true posterior.

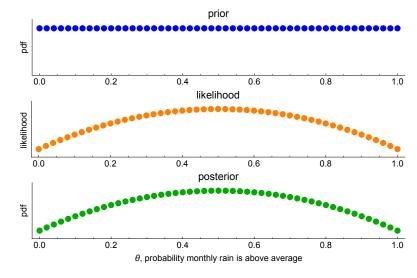
- X_t measures whether rainfall exceeds long term monthly average.
- Suppose $X_t = 1$ and $X_{t+1} = 0$.
- Assumed $p(X_t = 1, X_{t+1} = 0 | \theta) = \theta(1 \theta)$; i.e. likelihood.
- Also assume $p(\theta) = 1$; i.e. the prior.
- Discretise $\theta \in (0,1) \rightarrow (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)$.



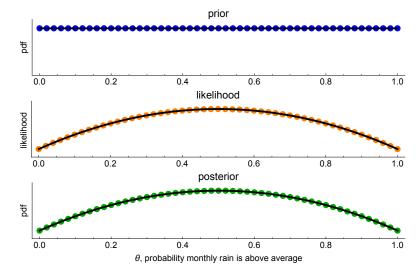




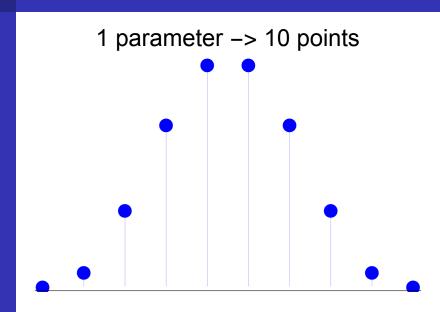
Discretise θ at intervals of 0.02.



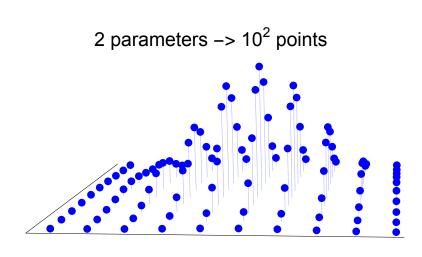
Discretise θ at intervals of 0.02.



The problem with discretised Bayes



The problem with discretised Bayes



The problem with discretised Bayes and numerical quadrature

Question: how many grid points do we need for a 20-parameter model?

Answer: $10^{20} = 100,000,000,000,000,000,000$ grid points :: impossible!

Same goes for other methods that makes Bayesian inference discrete, for example **numerical quadrature**.

The problem of aforementioned methods: summary

- Bayesian inference requires us to difficult integrals; both for the denominator and posterior summaries.
- Conjugate priors are too simple for most real life examples.
- Another method is to approximate integrals by discretising them into sums.
- Method works ok for models with a few parameters.
- **But** doesn't scale well for models with more than about 10 parameters (curse of dimensionality).
- Question: can we find a method whose complexity is independent of the # of parameters?

- Previous lecture recap
- 2 Posterior predictive checking
- The difficulty of exact Bayes revisited
- Potential solutions
- Sampling

Black box die

- Black box containing a die with an unknown number of faces, and weightings towards sides.
- Shake the box and view the number that lands face up through a viewing window.
- Note: an individual shake represents one sample from the probability distribution of the die.

Black box die: estimating mean

- Question: How can we estimate the die's mean?
- Answer: shake it off! Then calculate the overall mean across all shakes.

Black box die: sampling to estimate a sum

• Mean of a **sample** of size *n* is:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{15}$$

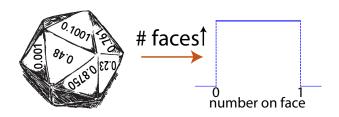
• Whereas the true mean of the die is given by:

$$E(X) = \sum_{j=1}^{\# \text{ races}} Pr(X_j = x_j) \times x_j$$
 (16)

• For a sample size of $<\sim$ 1000 we were able estimate:

$$\overline{X} \approx \mathrm{E}(X)$$
 (17)

An infinitely-sided die as a continuous distribution



- Imagine increasing the number of faces to infinity (a strange die indeed).
- Each face corresponds to one real number between 0 and 1.
- All possible numbers between 0 and 1 are covered.
- Basically like a continuous uniform distribution between 0 and 1.

An infinitely-sided die

 However its mean is now given by an integral rather than a sum.

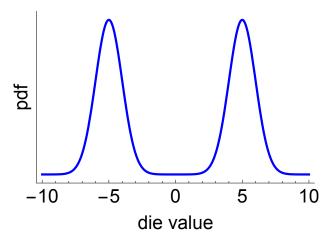
$$E(X) = \int_{\text{all faces}} p(X) \times X dX$$
 (18)

- Question: can still estimate its true mean by the sample mean?
- If so this amounts to estimating the above integral!

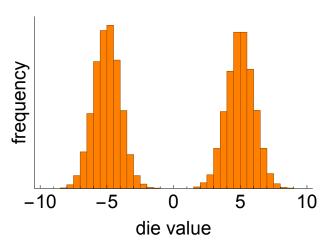
Continuous distribution sampling

A stranger distribution

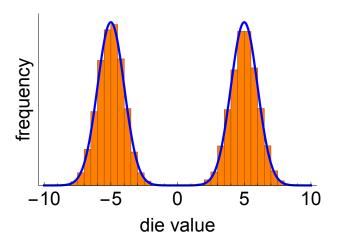
- Method seems to work for continuous uniform distribution.
- Question: does it work for other distributions?



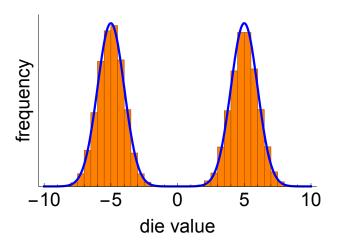
Compare samples...



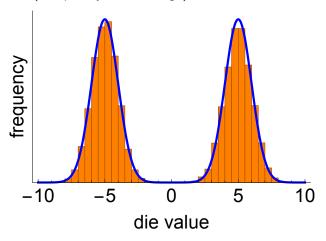
...with actual distribution \implies same shape!



Therefore sample properties \rightarrow actual properties.



Note: nowhere have we explicitly mentioned the parameter dimension (complexity-free scaling?).



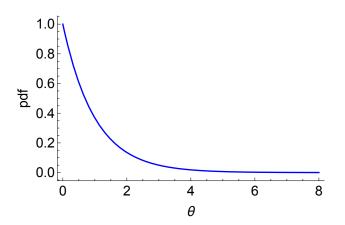
What is an independent sample?

- Aforementioned methods require us to generate independent samples from the distribution.
- Question: what is an independent sample?
- Answer: a value drawn from the distribution whose value is unconnected to other samples (apart from their joint reliance on the distribution.)

How to generate independent samples?

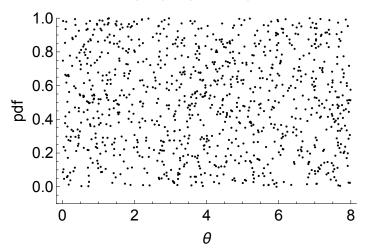
- By definition using independent sampling to estimate integrals requires us to be able to generate independent samples: $\theta_i \sim p(\theta)$.
- Not as simple as might first appear.
- Most statistical software has inbuilt ability to generate (pseudo-)independent samples for a few basic distributions: uniform, normal, poisson etc.
- However, for more complex distributions it is not trivial to create an independent sampler.

Example: generate independent samples from exponential distribution

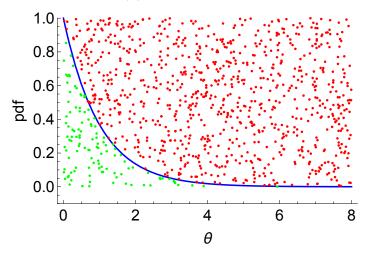


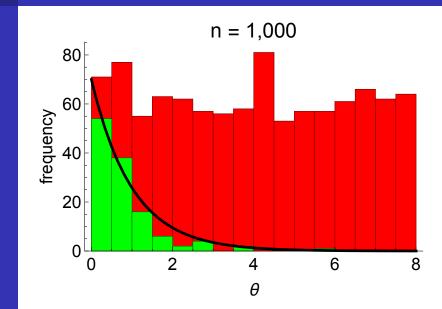
Question: how can we generate independent samples from the above distribution?

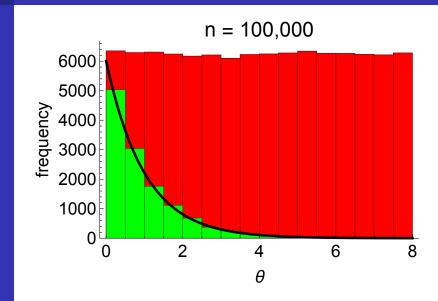
Generate 2,000 random samples between 0 and 1, and pair consecutive samples as (x, y) = (8n, n + 1) coordinates:



For each (x, y) pair, reject an $x = \theta$ sample if y > p(x). Alternatively, if $y \le p(x)$ accept sample:







Independent sampling: difficult in practice

- Inefficiency exponentially as the distribution's complexity (again curse of dimensionality.)
- Other methods exist (for example, inverse transform sampling or importance sampling), but are either inefficient or overly-complex to apply.

The problem with independent sampling

 Remember we want to use sampling to estimate quantities like:

$$E(\theta|X) = \int \theta \times p(\theta|X) d\theta$$
 (19)

- However, in general we cannot calculate $p(\theta|X)$ because of the denominator of Bayes' rule.
- Even *if* we could, unlikely that we can develop an efficient scheme for independent sampling from posterior.

Sampling from posterior

Question: Can sampling still save the day?

Summary

- Posterior predictive checks are essential to model development.
- Model development should not occur in the ether; reflecting the eventual use of model (use appropriate posterior predictive checks).
- Exact Bayesian inference requires us to do impossible integrals.
- Discretising methods only work for models with a handful of parameters.
- Sampling allows us to estimate key characteristics of a distribution without worrying about model complexity.
- Independent sampling is not generally possible for the posterior.

Reading list

The full hog(s).

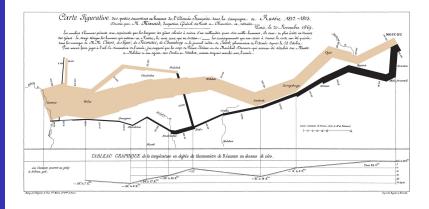
- Chapter 3 (sampling) from "Statistical Rethinking", McElreath (2016).
- Chapter 6 (posterior predictive checks) from "Bayesian data analysis", Gelman et al. (2014), 3rd edition.
- Part 2 (inference for a Binomial model) from "Doing Bayesian Data Analysis", Kruschke, 2nd edition.

Reading list

Lower-calorie options.

- Chapter 1, 2 and 3 from "Mastering Metrics", Angrist and Pischke.
- "Red State/Blue State divisions in the 2012 Presidential Election", Feller et al. (2012), *The Forum*.
- "The Visual Display of Quantitative Information", Tufte.

Napoleon: Tuftian magic



Next time

