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1 Introduction to answers

This document provides the answers to problem set 1. If any further clarification is
required I may produce some videos where I go through the answers.

2 Crime and Unemployment - practical

1. The result of the histogram of the ’violence’ variable is shown below. On graphing
this data it is evident that the majority of the states have violent crime rates from
200-600 cases per 100,000 people. The outlier here is ’The District of Columbia’
on the far right.

2. The unemployment data histogram is shown below. It is evident that there is
quite a considerable spread in the rates of unemployment, with the modal bin
being 6.8 - 7.9%.
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3. The District of Columbia. What makes this state quite so violent?!

4. The summary statistics for the unemployment dataset are shown below.

Summary Statistics, using the observations 1–51
for the variable Unemployment (51 valid observations)

Mean Median Minimum Maximum

6.7647 6.9000 2.9000 9.6000

Std. Dev. C.V. Skewness Ex. kurtosis

1.5393 0.22755 −0.45205 −0.39024

5% perc. 95% perc. IQ Range Missing obs.

3.8000 9.1200 2.4000 0

5. The scatterplot of rates of violence against unemployment rates is shown below
for the 51 states. To add data labels to each of the points, all that is required is
to right click on the plot, and select ’All data labels’. From this chart it is evident
that the District of Columbia is a clear outlier, and we might want to treat this
point differently from an analysis (regression) perspective.
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6. A correlation of 0.42 does not mean much per se. It is suggestive that there is
some positive relationship between the two variables which is relatively strong.

7. The results of the ordinary least squares regression are shown below.

Model 1: OLS, using observations 1–51
Dependent variable: Violence

Coefficient Std. Error t-ratio p-value

const 24.3979 113.900 0.2142 0.8313
Unemployment 53.3478 16.4256 3.248 0.0021

Mean dependent var 385.2804 S.D. dependent var 195.1137
Sum squared resid 1566285 S.E. of regression 178.7876
R2 0.177141 Adjusted R2 0.160348
F(1, 49) 10.54851 P-value(F) 0.002102
Log-likelihood −335.8419 Akaike criterion 675.6837
Schwarz criterion 679.5474 Hannan–Quinn 677.1601

8. The coefficient on unemployment is approximately 53. This suggests that for
a 1% increase in unemployment, on average there tends to be 53 more cases of
violence per 100,000 people.
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9. The standard deviation of unemployment can be seen from its summary statistics,
and is 1.5. An increase in unemployment by 1.5 will result in an increase in the
rate of violence by 1.5×53 ≈ 82 cases on average per 100,000 people. The standard
deviation in ’Violence’ is 195. So in terms of standard deviations, the 82.0 cases
equates to approximately 0.42 s.d.

10. The results of this regression are shown below. An increase in violence by 195.32
is associated with an average increase in the unemployment rate by 0.66%.

Model 2: OLS, using observations 1–51
Dependent variable: Unemployment

Coefficient Std. Error t-ratio p-value

const 5.48538 0.440645 12.45 0.0000
Violence 0.00332050 0.00102237 3.248 0.0021

Mean dependent var 6.764706 S.D. dependent var 1.539328
Sum squared resid 97.48938 S.E. of regression 1.410524
R2 0.177141 Adjusted R2 0.160348
F(1, 49) 10.54851 P-value(F) 0.002102
Log-likelihood −88.88777 Akaike criterion 181.7755
Schwarz criterion 185.6392 Hannan–Quinn 183.2520

11. Making ’Violence’ the subject of the above regression model yields:

Violence = (1/0.0034) ×Unemployment − (1/0.0034) × 5.589

Or more neatly.

Violence = 294.11 ×Unemployment − 1643.82

Note that this is completely different to the results which we obtained from our
OLS regression of ’Violence’ on ’Unemployment’. This is because of the fact that
the regression of y on x is not the same as the regression of x on y. The former
minimises square distances of ’y’ from the line, whereas the latter minimises
square distances in ’x’. Rearranging the latter regression equation will hence not
yield the former. For example this model suggests that a 1.58% increase in the
unemployment rate will increase violence rates by 467.6! Very different to the
previous estimate.

12. Based on these data alone it is impossible to understand fully the causal mech-
anism. In my view it is unlikely that violence causes unemployment from a
theoretical standpoint, but it is impossible to say whether unemployment causes
violence, or whether they are simply both correlated/caused by a third unknown
factor.
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13. There are a number of factors which are correlated with violence, which could
also be correlated with unemployment. Examples of this might be ethnic frac-
tionalisation, or some measure of geography. These would need to be explictly
controlled for in a regression before any conclusions are made, since omitted
variable bias in the estimation of the effect of unemployment on violence is likely
rife.

3 Theory

This section aims to build up your theoretical knowledge of econometrics, and should
cover the first 30 videos or so of material from the ’undergraduate econometrics course’.
This section will complement the practical part of the problem set, but is not a required
part of the course.

1. For a pupil, i, selected at random from a school, the number of years of education
of their parents, Xi, is given by:

Xi = µ + εi

εi ∼ iid(0, σ2). Here µ is the mean number of years of education completed by
parents. For a sample of N students selected independently from the population:

(a) The sample mean is given by X̄ = 1
N

N∑
i=1

Xi. Taking the expectations of both

sides yields its expected value of µ.

E(X̄) = E( 1
N

N∑
i=1

Xi) = 1
N

N∑
i=1
E(Xi) = 1

N

N∑
i=1
µ = 1

N Nµ = µ

(b) To calculate the variance, just apply it to both sides of the equation, and not
that due to the independence of Xs, there is no need to worry about any
covariance terms:

Var(X̄) = Var( 1
N

N∑
i=1

Xi) = 1
N2

N∑
i=1

Var(Xi) = 1
N2

N∑
i=1
σ2 = 1

N2 Nσ2 = σ2

N

The reason the N2 term appears is since for any random variable Z, we have
that the variance of a constant ’a’ times Z is: Var(aZ) = a2Var(Z)

(c) To prove consistency it is sufficient (actually as it turns out more than sufficient)
that the variance of the estimator tends to zero as N tends to infinity, and that
the expected value of the estimator tends to the true value at the same time. We
already know that the expected value of the sample mean is the population
mean, µ, for any sample size. The variance of the sample mean is σ2/N
meaning that as N tends to infinity, the variance tends to zero. Hence, since
these two conditions are satisfied, the sample mean is a consistent estimator
of the population mean.

(d) Another way to think about the sample mean is as a least squares estimator.
The estimator aims to place µ̂ at a value to minimise the following sum:
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S =
N∑

i=1
(Xi − µ̂)2

Where the term in the parenthesis is the error of prediction. The first order
conditions for this minimisation are:

∂S
∂µ̂

= −2µ̂
N∑

i=1

(Xi − µ̂) = 0 (1)

Which when rearranged yields:

µ̂ = X̄ = 1
N

N∑
i=1

Xi

(e) Yes, it is BLUE. The first part of the proof is proving the conditions for a linear
estimator to be unbiased. The second part then proves that if the estimator is
unbiased, the variance of a linear estimator cannot better it.

First of all we define a linear estimator X̃ = 1
N

N∑
i=1

wiXi, and we assume that

the weights are made up: wi = 1 + δi. The 1 here is what the sample mean
weights are, so we are saying that our new estimator weights differ from that
of the sample mean by the amount δi. Let’s now derive the conditions for the
estimator to be unbiased.

E(X̃) = E( 1
N

N∑
i=1

(1 + δi)Xi) = µ +
µ
N

N∑
i=1
δi

Hence we must have that
N∑

i=1
δi = 0 for our new linear estimator to be unbiased.

Now we are going to derive the variance of our new estimator.

Var(X̃) = 1
N2

N∑
i=1

(1 + δi)2σ2 = σ2

N + σ2

N2

N∑
i=1

(2δi + δ2
i ) = Var(X̄) + σ2

N2

N∑
i=1
δ2

i

We got the last expression by using the unbiasedness condition which we
derived above. Finally, we note that for non-zero weights the expression
N∑

i=1
δ2

i = η > 0, hence we have that the variance of the new estimator is greater

than that of the sample mean:
Var(X̃) = Var(X̄) + η

Hence this has proved that any other linear estimator apart from the sample
mean has a greater sampling variance. Hence we have proved that the sample
mean is BLUE.

2. For each of the following state whether or not the estimator is biased, consistent,
both or neither, when used to estimate the population mean:

(a) X̃ = 1
N−1

N∑
i=1

Xi Consistent. The estimator is biased due to the dividing through

by N-1. But the expected value of this estimator converges towards µ as N
tends to infinity.

(b) X̂ = 2
N

N/2∑
i=1

Xi This is both unbiased and consistent. It is not BLUE however

since it only uses half the sample’s data, the sample mean betters it.

Page 7



(c) Assuming N is even. X̄ = 2
N

N/2∑
i=1

(Xi + µ) + 2
N

N∑
i=N/2+1

(Xi − µ) This is unbiased

and consistent - it is also BLUE. If you work through the maths it is actually
the sample mean!

(d) Y ∼ N(µ, σ2) This is an odd estimator, in that it does not depend on the
sample properties. It is unbiased however, but is not consistent! A very rare
type of estimator. Albeit from a rather silly example.

(e) Z =
N∑

i=1
wiXi Where:

N∑
i=1

wi = 1 Unbiased and consistent.

3. Examine the following economic model

Yi = α + βXi + εi

(a) See the videos starting with this one which walk through the solution to this
question. http://tinyurl.com/pdhn9dk

(b) The regression of X on Y yields the following estimator for the slope parameter:

δ̂ =

N∑
i=1

(Xi−X̄)(Yi−Ȳ)

N∑
i=1

(Yi−Ȳ)2

(c) No. See the question in the practical part above. The regression of Y on
X minimises the sum of square distances of points on the line from each Y.
The regression of X on Y, minimises the sum of square distances of points on
the line from each X. These are not equivalent. You cannot get to the other
slope parameter by inverting the original. The expression δ̂ × β̂ can be found
however:

δ̂ × β̂ =
[

N∑
i=1

(Xi−X̄)(Yi−Ȳ)]2

(
N∑

i=1
(Yi−Ȳ)2)(

N∑
i=1

(Xi−X̄)2)

(d) This expression of the RHS actually looks similar to something we have dis-
cussed in the videos - it is the square of the correlation coefficient! Hence we
have that the correlation coefficient is simply the geometric mean of the two
slope regression coefficients:

ρ̂ = (δ̂ × β̂)
1
2

4. There are two populations of individuals called samies varies respectively. The
height of individuals in the samies is given by:

Xi ∼ µ + εi

And the height of individuals in the varies is given by:

Yi ∼ µ + 2εi

Where εi ∼ iid(0, σ2).

(a) Yes. See the logic in the second question. All you need to do to prove this is
take the expectation of both sides.
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(b) Yes on both accounts. Again see the logic above.

(c) The variance of the sample means are Var(X̄) = σ2

N and Var(Ȳ) = 4σ2

N . Hence
the samies’ sample mean is the most efficient of the two estimators.

(d) You have a sample of N individuals from each population. Yes. Since they
are both, on their own unbiased, then mean of the two estimators will also be
unbiased. However, it is not the best estimator possible. See the next part.

(e) In order to construct a BLUE estimator we first of all need to ensure that it
is unbiased, then minimise its variance over choice of parameters. Let us
construct an estimator, Z̃ which is a linear combination of the two sample
means.

Z̃ = αX̄ + βȲ
In order for this estimator to be unbiased we must have that its expectation is
equal to the population mean µ. This means that:

E(Z̃) = αE(X̄) + βE(Ȳ) = αµ + βµ = µ

Which implies that α + β = 1. Hence we can rewrite our estimator as:
Z̃ = αX̄ + (1 − α)Ȳ

Now finding the variance of our estimator (noting that the covariance between
the two estimators is zero):

Var(Z̃) = α2Var(X̄) + (1 − α)2Var(Ȳ) = σ2

N [α2 + 4(1 − α)2] = σ2

N [5α2
− 8α + 4]

In order to find the best unbiased estimator, we need to minimise this expres-
sion over choice of α. Differentiating, and setting this equal to zero:

∂(Var(Z̃))=
∂α = σ2

N [10α − 8] = 0
If you then solve this, one finds that α∗ = 4

5 . Hence the linear combination of
the two sample means that has the lowest variance, and is still unbiased is
given by:

Z̃ = 4
5X̄ + 1

5Ȳ
The intuition behind this is that this estimator gives most weight to the sample
mean which has the lowest variance, minimising predictive error. In princi-
ple one could give zero weight to the second sample mean, but this would
unnecessarily dispense with observations, reducing efficiency.
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