Problem set 5: An introduction to time series

September 20, 2013

1 Introduction

This problem set accompanies the Youtube lecture series, and roughly corresponds to
videos 156-180, covering an introduction to time series.

2 Practical - Eurozone & World economic data

1. (a) The time series scatters of the various series are shown below.
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(b) Looking at each of the time series, they all appear non-stationary. The real
wage rate and wealth could potentially be trend-stationary on first appear-
ances, although most likely not.

(c) All the correlograms appear to show evidence of AR(1) serial correlation. This
is evidenced by the strong (but decaying) autocorrelation as the number of
lags increases. Also the partial autocorrelation peaked at the first lag suggests
that it is a AR(1) process, not a higher order AR process. Possible exceptions
are EEN and INFQ which show significant negative partial autocorrelations



with the second lag. This could indicate that they could be modelled perhaps
as having an MA(2) component, but this is quite a tentative conclusion.
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(d) GDP, Wealth, Wage I would suggest would be the only series which look like
they could be trend-stationary. The others look more random-walk-ish.

(e) Conducting a test for unit roots for each of the series we find that in all
cases (including a time trend for those series that are clearly trending), that
the p value against the appropriate Dickey-Fuller distribution is above the
5% critical value. Hence we cannot reject the null hypothesis of each series
having a unit root. Hence the series themselves are highly persistent, and
non-stationary. I used four lags of the differences in the ADF tests, since we
are dealing with quarterly data.

(f) There cannot be a long-run (cointegrated) relationship between these two
variables. To see this look at the plot below with both series superimposed on
top of one another. There is no single number which can multiply inflation to
make the difference between them stationary.
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Another way to see this is to run a (spurious) regression of GDP on inflation.
The results of this are shown below.

Model X: OLS, using observations 1971:1-1998:3 (T = 111)
Dependent variable: YER
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Coefficient Std. Error t-ratio  p-value
const  1.18241e+006 20320.5 58.1879  0.0000
INFQ -1.75610e+007 1.13925e+006 —15.4145 0.0000

Mean dependent var ~ 901020.4 S.D. dependent var 166945.7
Sum squared resid 9.64e+11 S.E.of regression  94048.96
R? 0.685521 Adjusted R? 0.682636
F(1,109) 237.6054 P-value(F) 3.81e-29
Log-likelihood —1427.617 Akaike criterion 2859.235
Schwarz criterion 2864.654 Hannan—Quinn 2861.433
P 0.940485 Durbin—-Watson 0.054640

Note that we have an R-squared which is far in excess of the value of the
Durbin-Watson statistic - a classical sign of a spurious regression! Further,
examining a time series plot of the residuals from this regression it is appar-
ent that these are certainly non-stationary - another sign that they are not
cointegrated.
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(g) See next part.

(h) In order to test the order of integration of each series, we first take the first
differences of each of the series, and graph these. The graphs of the first
differenced series are shown below. From the plots shown, the series which
look particularly non-stationary are that of the wage rate, (the variance of the
process looks to increase over time as well as the series showing other signs
of persistence), and the unemployment rate (the first difference still appears
to be ‘random-walking’).
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We then conduct ADF tests on these series, bearing in mind the visual plots
of the series. We find that for all series except the wage rate, we reject the
null of the series having a unit root. Hence all series other than the wage
rate appear to be I(1), since although the levels are non-stationary, the first
differences are stationary. A time series plot of the second difference of the
wage rate is shown below. Accordingly, we reject the null hypothesis of a unit
root, and conclude that the wage rate appears I(2). This makes sense since,
in the youtube lectures I spoke about prices as often being 1(2), and wages
are essentially just prices. The intuition is that the first difference represents
inflation, which itself is non-stationary.
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(i) Testing for a relationship in differences between variables is not equivalent to
testing for a long run relationship in levels. See this youtube video for a full
explanation: http://tinyurl.com/osqvp7b

() The results of this regression are shown below.

Model 2: OLS, using observations 1971:4-1998:4 (T = 109)
Dependent variable: d_YER

const
d_INFQ_1
d_INFQ_2

Coefficient

5308.31

Std. Error
484.415

1.61713e+006 497453.
—2.05171e+006 497075.
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t-ratio

10.9582
3.2508
-4.1276

p-value

0.0000
0.0015
0.0001



We have an R-squared which is lower than the value of the Durbin-Watson
statistic, suggestive that we may have avoided the issue of spurious regression.
Also, since we are now using differences of the variables, these are stationary
processes, meaning that we are less likely to run into the issue of spurious
regression. A plot of the residuals from this regression are shown below, and

Mean dependent var
Sum squared resid
RZ

F(2,106)
Log-likelihood
Schwarz criterion

A

p

5366.872
2.68e+09
0.147627
9.179361
1082.032
2178.137
0.255408

S.D. dependent var
S.E. of regression
Adjusted R?
P-value(F)

Akaike criterion
Hannan—Quinn
Durbin—Watson

appear to be stationary; again suggesting stationarity.

(k) Looking at a correlogram for the above residual series, it is possible that the
series may be well modelled as an MA(1) process. This is because of the fact
that there is significant autocorrelation with the first lag, but no other further

lags.

(1) We can use either the Durbin-Watson test or an Breusch-Godfrey test. Both
tests conclude that there is significant serial correlation present. The Breusch-
Godfrey suggests that this is due to correlation between the residuals and
their first lag; suggesting either an AR(1) or MA(1) process. Combining the
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5390.701
5023.645
0.131545
0.000211
2170.063
2173.337
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2. (a)

(b)

(©)
(d)

(e)

3. (a)

(b)

(©)

(d)

(e)

(f)

evidence of both this test and the correlogram results, we conclude that the
process could be well-modelled as an MA(1) process.

Theory

Yes. We know this because of the fact that the residuals from this regression
are non-stationary (they are trending upwards over time), and we can only
get non-stationary residuals if we have at least one non-stationary variable in
the regression.

No. Since the residuals are non-stationary we cannot conclude that the rela-
tionship is cointegrated.

Nothing! We have likely run a spurious regression.

Since the p value is below the 5% critical value, we reject the null hypothesis
that the series has a unit root, and could perhaps suggest that we have found
a cointegrated relationship.

We cannot infer anything using the standard errors from this regression unfor-
tunately, this is because under the null hypothesis the relationship is spurious!
We could use a leads and lags estimator however to clean up the issue of the
violation of strict exogeneity. Assuming that we have no serial correlation or
heteroscedasticity, and that the errors appear normal, we could then proceed
on to do inference using the typical standard errors. Alternatively, we could
use some sort of an Error Correction Model.

(GDP, weather) - weather (if not too severe) could cause temporary (one period)
effects on GDP. Civil war would likely cause structural changes which persist
for longer.

The mean of this process is zero. To see this back-substitute in for X; to obtain
X; = p(pXia + €11 + Oe10) + &1+ 01 = p'Xo + Yoo p'(ersi + Oer_i)
From this, it is apparent when we apply the expectations operator we will

obtain [E(X;) = 0.

The variance of the process can be obtained in similar fashion to that of a typical
2(1+62)

o See video: http://tinyurl. com/onmwwul

AR(1) process, equalling

It is no different to that of the derivation of the conditions for a typical AR(1)
process to be stationary. We just require that |p| < 1. Intuitively, it doesn’t
matter how big the effect of a shock is in the next period (that given by the 0
term), so long as the effect propagates through time with an ever-decreasing
magnitude this means that the time series will be stationary and not persistent.

Yes. The correlation between X; and X;_, is given (for 7 > 1) by p*. Hence
if |p| <1 the series is weakly dependent since the correlation tends to zero
(quickly enough technically, but don’t worry about that) as 7 tends to infinity.

For an AR(2) process to be stationary, we require that the lags polynomial
have roots which lie outside the unit circle. Or put another way, are greater
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than 1. For an AR(2) process we can get the lags polynomial by first writing
the series as

X — PlXt—l - pZXt—Z =&
Or using the lag operator

(1-piL = po L)X, = ¢
The lags polynomial is the term in parentheses on X;, and it must be the case
that solutions to

1-piL—pL2=0
Are outside the unit circle. In other words we must have thatIL > 1.
This must hold of an ARMA process of any order, all we need to do is work out
the AR polynomial term, and then test whether the solutions are all greater
than 1. Checking this method works for an AR(1) process. We must have
solutions to
1-pL=0

Which are greater than 1, which means that [L| = |%| > 1, or alternatively,
lpl < 1, which is what we have proved by other methods! This lags methodol-
ogy works!
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