
Problem set 2: understanding ordinary least
squares regressions

September 12, 2013

1 Introduction

This problem set is meant to accompany the undergraduate econometrics video series
on youtube; covering roughly the 30th video through to the 85th. These are the answers
to this problem set.

2 NBA Wages - practical

1. The results of the boxplot are shown below. The wage data is positively skewed.

2. The correlation matrix of all the variables in the dataset is shown below. (Forgive
the format which this matrix is outputted in - I know it’s not the neatest table!)
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Correlation coefficients, using the observations 1–269
(missing values were skipped)

5% critical value (two-tailed) = 0.1196 for n = 269

marr wage exper age coll
1.0000 0.1581 0.3283 0.3673 −0.0435 marr

1.0000 0.4092 0.3424 −0.1056 wage
1.0000 0.9412 0.0873 exper

1.0000 0.0743 age
1.0000 coll

games minutes guard forward center
0.0691 0.1051 0.0305 −0.0253 −0.0069 marr
0.3038 0.5634 −0.1247 0.0511 0.0967 wage
0.1482 0.2143 −0.0520 −0.0002 0.0684 exper
0.1264 0.1471 −0.0657 0.0059 0.0784 age
−0.0149 −0.0681 0.0693 −0.0494 −0.0263 coll

1.0000 0.7878 0.1181 0.0186 −0.1791 games
1.0000 0.1184 0.0326 −0.1978 minutes

1.0000 −0.7079 −0.3865 guard
1.0000 −0.3778 forward

1.0000 center

points rebounds assists draft allstar
0.1237 −0.0330 0.1607 0.0267 0.0536 marr
0.6570 0.5409 0.3282 −0.3625 0.3973 wage
0.1908 0.1635 0.1499 0.0246 0.0800 exper
0.1048 0.1165 0.0783 0.1164 0.0027 age
−0.1204 −0.1152 −0.0335 0.1016 −0.0810 coll

0.5006 0.3328 0.3562 −0.1155 0.1847 games
0.8392 0.5852 0.5997 −0.2326 0.4247 minutes
0.1008 −0.4797 0.5085 0.1487 0.0231 guard
0.0005 0.3678 −0.2923 −0.1532 −0.0160 forward
−0.1328 0.1486 −0.2849 0.0049 −0.0093 center

1.0000 0.5633 0.5393 −0.3228 0.6086 points
1.0000 0.0600 −0.2995 0.3325 rebounds

1.0000 −0.0631 0.3798 assists
1.0000 −0.2314 draft

1.0000 allstar
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avgmin lwage black children expersq
0.1098 0.1478 −0.0947 0.2811 0.2883 marr
0.6218 0.8938 0.0768 0.1657 0.3458 wage
0.2234 0.4056 −0.0050 0.2048 0.9503 exper
0.1411 0.3178 −0.0543 0.1925 0.9046 age
−0.0632 −0.0559 0.0289 −0.0802 0.0489 coll

0.5809 0.3697 0.1039 0.0812 0.0935 games
0.9353 0.5915 0.1402 0.1742 0.1278 minutes
0.1050 −0.0859 0.0542 −0.0011 −0.0657 guard
0.0377 0.0984 0.1008 0.0313 −0.0118 forward
−0.1869 −0.0158 −0.2027 −0.0395 0.1016 center

0.8870 0.6194 0.1163 0.1755 0.1226 points
0.6351 0.4882 0.1218 0.1419 0.1164 rebounds
0.6327 0.3614 0.0245 0.1853 0.0677 assists
−0.2676 −0.4022 −0.0818 −0.0518 0.0076 draft

0.4536 0.2954 0.0587 0.0804 0.0588 allstar
1.0000 0.6407 0.1360 0.1946 0.1293 avgmin

1.0000 0.1203 0.1888 0.3175 lwage
1.0000 0.0194 −0.0058 black

1.0000 0.1583 children
1.0000 expersq

agesq marrblck
0.3574 0.8028 marr
0.3393 0.1514 wage
0.9421 0.2319 exper
0.9968 0.2441 age
0.0690 0.0074 coll
0.1181 0.0827 games
0.1351 0.1151 minutes
−0.0704 0.0601 guard

0.0020 0.0126 forward
0.0897 −0.0952 center
0.0978 0.1342 points
0.1118 −0.0071 rebounds
0.0646 0.1236 assists
0.1084 −0.0317 draft
0.0052 0.0372 allstar
0.1286 0.1215 avgmin
0.3108 0.1293 lwage
−0.0495 0.3500 black

0.1839 0.2237 children
0.9269 0.2036 expersq
1.0000 0.2380 agesq

1.0000 marrblck

From the various experience bivariate correlations, it is clear that age (as you might
expect) is highly correlated with experience. The issue with including both of these
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variables in an OLS regression is due to the high level of multicollinearity amongst
them. Intuitively, OLS is going to struggle to disentangle the effect of experience
from age on players’ wages. This will be realised by a large estimated standard
error for both coefficients, and perhaps a lack of individual significance.

3. A number of variables are quite highly correlated with wages, having a correlation
over 0.3: experience, age, games, minutes, points, rebounds, assists, draft, allstar,
avgmin, and trivially lwage, expersq, agesq.

4. The result of an X-Y scatter is shown below. There appears to be quite a strong
positive correlation between these two variables.

5. The results of this regression are shown below. Since the p value on experience is
less than 0.05 we can conclude that the effect of experience on wages is significant
(in this current model setting).

Model 1: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const 807.932 100.847 8.0114 0.0000
exper 120.317 16.4199 7.3275 0.0000

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 2.23e+08 S.E. of regression 913.9559
R2 0.167425 Adjusted R2 0.164307
F(1, 267) 53.69196 P-value(F) 2.79e–12
Log-likelihood −2214.674 Akaike criterion 4433.348
Schwarz criterion 4440.538 Hannan–Quinn 4436.236
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6. One more year of experience is associated with an average increase in salary of
around $120K.

7. In my view this coefficient likely overstates the effect of experience on wages, since
those who are better tend to be employed as professional basketball players for
longer, and hence are paid more. In other words there is another third variable
’quality’ which is causing both wages and experience to be higher. A measure of
players’ quality is contained within the variables: ’points’, ’minutes’, ’rebounds’
etc. variables. So their inclusion is likely to bring the estimate of the effect of
experience down.

8. The results of this regression are shown below. Unsurprisingly this model suggests
that the effect of age on wages is positive, although, at first glance, the effect appears
that it might be smaller than experience.

Model 2: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −1341.73 467.888 −2.8676 0.0045
age 100.955 16.9510 5.9557 0.0000

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 2.36e+08 S.E. of regression 941.0834
R2 0.117268 Adjusted R2 0.113962
F(1, 267) 35.47000 P-value(F) 8.14e–09
Log-likelihood −2222.542 Akaike criterion 4449.085
Schwarz criterion 4456.274 Hannan–Quinn 4451.972

9. The average wage for a 30 year old would be 100.955 x age - 1341.73 which is
around $1.7m - this seems reasonable. For a 90 year old, our model predicts that
their wage will be close to $8m! This latter prediction is completely out of sample,
and also very unrealistic. One has to be very careful when extending the results
of a regression to make out of sample predictions. (Out of sample here means that
we currently do not have any data for the wages of 90 year old basketball players.)

10. One way might be to include the square of the age in the regression, as this would
suggest that there might be diminishing marginal returns to age. I include the
results of this regression below.

Model 3: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const −2701.01 3045.89 −0.8868 0.3760
age 197.275 213.941 0.9221 0.3573
agesq −1.67914 3.71785 −0.4516 0.6519
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Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 2.36e+08 S.E. of regression 942.4894
R2 0.117944 Adjusted R2 0.111312
F(2, 266) 17.78412 P-value(F) 5.64e–08
Log-likelihood −2222.439 Akaike criterion 4450.878
Schwarz criterion 4461.662 Hannan–Quinn 4455.209

Note that the results of this regression aren’t that suggestive of diminishing
marginal returns to age. Perhaps a better way to deal with this issue would
be not to make predictions on out of sample data!

11. The results of this regression are shown below. Note that the coefficient on age is
now negative, and the coefficient on experience has nearly doubled. This unstable
change in the coefficient values is due to high multicollinearity between age and
experience.

Model 4: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const 3295.29 1096.40 3.0055 0.0029
exper 223.686 48.2105 4.6398 0.0000
age −110.115 48.3352 −2.2782 0.0235

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 2.19e+08 S.E. of regression 906.8679
R2 0.183359 Adjusted R2 0.177219
F(2, 266) 29.86228 P-value(F) 2.00e–12
Log-likelihood −2212.075 Akaike criterion 4430.150
Schwarz criterion 4440.934 Hannan–Quinn 4434.481

12. The results of this regression are shown below along with the graph of actual vs
fitted wages. The results of this model are suggestive that an increase in 10 points
per game is associated with an increase in wages on average by $1.1m.

Model 5: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const 278.102 92.6940 3.0002 0.0030
points 111.667 7.84116 14.2411 0.0000

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 1.52e+08 S.E. of regression 755.1072
R2 0.431684 Adjusted R2 0.429555
F(1, 267) 202.8089 P-value(F) 1.28e–34
Log-likelihood −2163.316 Akaike criterion 4330.632
Schwarz criterion 4337.821 Hannan–Quinn 4333.519
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13. Observation number here is arbitrary and does not reflect any mechanism of inter-
est. Hence a residual plot against points is most appropriate. This plot is shown
below.

14. I would say that there is definitely evidence of systematic increases in the variance
of our estimates as points increases from 0-15. There is then a decline in variance
towards the latter end of the points spectrum. This makes intuitive sense. When
players score few points, they are not paid much. When they score a reasonable
number of points they tend to be paid more, but there is a higher variance. This
could be because of the fact that players on a basketball team occupy different
positions - some are more focussed on scoring, others on defending. This would
mean that once a threshold number of points is reached the players are paid more

Page 7



or less dependent on their respective abilities in their positions. When a player
scores a high number of points, they are in short supply, and can hence command
a higher wage.

15. I suspect it is too high. There is probably some reverse causality happening,
whereby players that are paid more tend to score more points. Also, points likely
also captures some of the effects of other variables that are important in determining
wages. For example, players from better teams have better team mates, and hence
tend to have more chances to score. At the same time the players on the better
teams tend to be paid more.

16. No real answer here - the two variables should now be in your Gretl variable
selection.

17. Now create two new regression models (keeping your current regression of wages
on points):

wagei = α + β1pointsi + β2pointsqi

wagei = α + β1pointsi + β2pointsqi + β3pointsci

The results of these two regressions are shown below. Model 6: OLS, using
observations 1–269Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const 396.641 148.060 2.6789 0.0078
points 85.4355 26.7260 3.1967 0.0016
pointsq 1.07765 1.04967 1.0267 0.3055

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 1.52e+08 S.E. of regression 755.0309
R2 0.433927 Adjusted R2 0.429671
F(2, 266) 101.9520 P-value(F) 1.36e–33
Log-likelihood −2162.784 Akaike criterion 4331.568
Schwarz criterion 4342.352 Hannan–Quinn 4335.899

Model 7: OLS, using observations 1–269
Dependent variable: wage

Coefficient Std. Error t-ratio p-value

const 59.2577 221.555 0.2675 0.7893
points 207.232 65.4185 3.1678 0.0017
pointsq −9.68923 5.38662 −1.7988 0.0732
pointsc 0.260608 0.127911 2.0374 0.0426

Mean dependent var 1423.828 S.D. dependent var 999.7741
Sum squared resid 1.49e+08 S.E. of regression 750.5981
R2 0.442657 Adjusted R2 0.436348
F(3, 265) 70.15684 P-value(F) 2.00e–33
Log-likelihood −2160.694 Akaike criterion 4329.387
Schwarz criterion 4343.766 Hannan–Quinn 4335.162
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(a) The latter model has a higher R-squared of 0.44. This means that these inde-
pendent variables explain 44% of the variation in the dependent variable.

(b) This would suggest that there is diminishing diminishing (yep two diminish-
ings!) marginal returns to points. In other words it is pretty nonsensical.

(c) The last regression still has the highest adjusted R-squared.

(d) The first regression (with only wages regressed on points), since it is parsi-
monious, and has a clear interpretation. The latter of the three especially is
overfitting the data. I include the last regression fitted residuals below so you
can see for yourself. Don’t let apophenia (seeing meaningless patterns in data)
get the better of you - a linear line is still better than this curve.

18. Freestyle: this is the best I /a few of my colleagues could do. I’m not suggesting
by any means this is the gold standard, but in my view it represents a reasonably
good first stab at a reasonable model for wages. The variable ’centerpoint’ is equal
to center times points, and ldraft is the log of the draft variable. All the variables
have the expected signs, and there is not a great deal of movement in coefficient
values when the specification is changed slightly. There is a logic to the inclusion
of the multiplication of center and points, since it is suggested that centers that
score lots of points will be valued disproportionately more (perhaps this makes
sense, my knowledge of basketball could be better!) Also, by logging the draft
variable this allows it to have a nonlinear effect on wages, which is to be expected.

Model 49: OLS, using observations 1–269 (n = 240)
Missing or incomplete observations dropped: 29

Dependent variable: wage
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Coefficient Std. Error t-ratio p-value

const 1003.72 185.293 5.4169 0.0000
points 68.6397 8.14700 8.4252 0.0000
centerpoint 36.1528 9.28749 3.8926 0.0001
ldraft −281.611 45.2199 −6.2276 0.0000
exper 83.9601 12.0779 6.9515 0.0000

Mean dependent var 1532.652 S.D. dependent var 996.5671
Sum squared resid 95068638 S.E. of regression 636.0404
R2 0.599478 Adjusted R2 0.592661
F(4, 235) 87.93361 P-value(F) 1.45e–45
Log-likelihood −1887.282 Akaike criterion 3784.563
Schwarz criterion 3801.967 Hannan–Quinn 3791.576

3 Theory

1. A researcher is interested in quantifying the effect of the number of broken windows
in a block on property prices, and the results of a preliminary regression are:

Hpricei = 100 − 10windowsi

Where windowsi represents the number of broken windows counted on a block, i,
and Hpricei is the average property value (in thousands of $) on that same block.

(a) Each additional broken window on a block is associated with a decline in
house prices of around $10K.

(b) Broken windows are likely associated with other omitted variables which
are correlated with house prices. An example might be the level of crime.
There is also possibly an argument that there is a degree of reverse causation
happening here, whereby lower-priced houses are more likely to suffer broken
windows.

(c) Due to its correlation with crime, it most likely overstates the effect which
broken windows have on house prices.

(d) Another variable is included in the regression, emergi, which is a measure of
the number of emergency services calls which were made from each block
over a period of time. And the result of the regression is:

Hpricei = 100 − 3windowsi − 5emergi

The effect of broken windows is diluted due to its correlation with emergency
calls - a measure of crime. They both may be highly correlated, meaning that
multicollinearity is at play, and can cause individual significances which are
relatively low compared to their joint significance.

2. The zero conditional mean assumption of the Gauss-Markov conditions is often
stated as:

E[εi|Xi] = 0 (1)
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(a) In order to prove this we need to be aware of the law of iterated expectations.
This relates the unconditional expectation to the conditional expectation by
the following:

E(Xiεi) = E[E(Xiεi|Xi)]
Since we are given Xi the expectations operator passes through it. QED.

E(Xiεi) = E[XiE(εi|Xi)] = 0

(b) Yes, it does. The covariance between Xi and εi can be written:
Cov(Xi, εi) = E(Xi − E(Xi))(εi − E(εi)) = E(Xiεi) − E(Xi)E(εi)

Since we know that E(εi) = 0 by definition, we have that Cov(Xi, εi) = 0.

(c) No. Independence implies covariance being zero, but not necessarily vice
versa. The reason independence implies covariance being zero, is that the
definition of independence of Xi and Yi is:

E(XiYi) = E(Xi)E(Yi)
Hence, we have that:

Cov(Xi,Yi) = E(XiYi) − E(Xi)E(Yi) = 0

3. A researcher is interested in measuring what the effect of an individual’s innate
’language intelligence’ is on their ability to learn a language. She finds 100 volun-
teers for the study who have all not learned French before, nor have they learned
any other languages to any serious fluency. Her theory is that those individuals
who have higher innate measures of ’language intelligence’ will take less time to
reach of level of proficiency in French.

Each volunteer is enrolled in a day course in basic French, and is tested at the end of
the day in French. At the end of the day each participant also takes a standardised
IQ test. The researcher then carries out the following regression:

scorei = α + βIQi + ui

(a) There are a range of variables which could help explain their ability to learn a
language which are correlated with IQ. Examples include tiredness (because
of the contemporaneous testing of both abilities), parental education, etc.

(b) It likely underestimates the effect of ’language intelligence’ on their language-
learning abilities. See this Youtube video for an explanation of why:
http://tinyurl.com/qz8syjk

(c) Using IQ in the regression is equivalent to having measurement error in the
independent variable. Hence we have that:

IQi = LIi + εi

Where we have that by definition Cov(LIi, εi) = 0. Hence we know that we
have a covariance between IQ and the error term:

Cov(IQi, εi) = Cov(LIi + εi, εi) = σ2
ε

Writing out the expression for the True relationship proposed we have that:
scorei = γ0 + γ1LIi + ηi

However, we don’t observe LIi hence we substitute in for it using our relation
between IQi and LIi above.
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scorei = γ0 + γ1IQi + (ηi − γ1εi)
Where the term in parenthesis is the observed error. Since we know that
Cov(IQi, εi) = σ2

ε, we can see straight away that there is endogeneity. Thus
meaning that OLS estimators are both biased and inconsistent. Furthermore
the bias will be downwards due to the negative sign in the expression above.
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