Lecture 2: Bayesian inference in practice

Ben Lambert¹ ben.c.lambert@gmail.com

¹Imperial College London

Tuesday 5th March, 2019

Outline

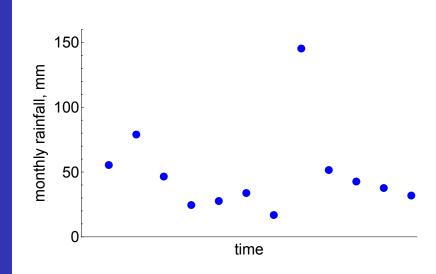
- Model testing through posterior predictive checks
- 2 Why is exact Bayesian statistics hard?
- 3 Attempts to deal with the difficulty
- Sampling

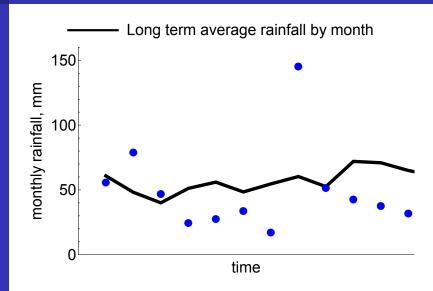
- Model testing through posterior predictive checks
- 2 Why is exact Bayesian statistics hard?
- 3 Attempts to deal with the difficulty
- 4 Sampling

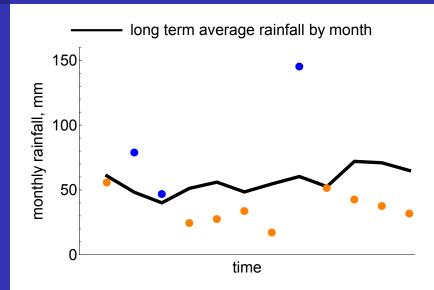
Example: Modelling rainfall in Oxford

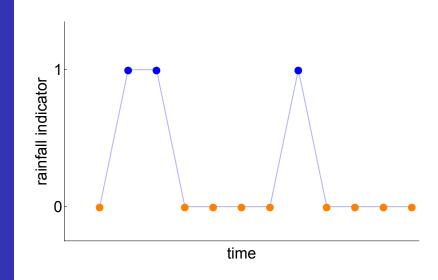
Example:

• Measure the average rainfall by month in Oxford.


Modelling rainfall in Oxford


Scenario: modelling Oxford rainfall for farmers


- Government needs a model for rainfall to help plan the budget for farmers' subsidies over the next 5 years.
- Crop yields depend on rainfall following typical season patterns.
- If rainfall is persistently above normal for a number of months ⇒ yields↓
- Assume crop more tolerant to drier spells.


⇒ create a binary variable equal to 1 if rainfall above average; 0 otherwise.

Choosing a likelihood

Building a model to explain $X_t \in (0,1)$; whether the rainfall in one month exceeds a long term monthly average.

- **Independence:** the value of X_t in month t is independent of that in the previous months.
- **Identical distribution:** all months in our sample have the same probability (θ) of rainfall exceeding long-term average.

Choosing a likelihood

Conditions:

- $X_t \in (0,1)$ is a **discrete** random variable.
- Assume **independence** among X_t .
- Assume **identical distribution** for X_t ; probability of rainfall exceeding monthly average is θ .
- \implies **Bernoulli** likelihood for each **individual** X_t .

The Bernoulli likelihood

 X_t measures whether or not the rainfall in a month t is above a long term average. A Bernoulli likelihood for a single X_t has the form:

$$p(X_t|\theta) = \theta^{X_t} (1-\theta)^{1-X_t} \tag{1}$$

But what does this mean? Work out the probabilities given θ :

•
$$p(X_t = 1|\theta) = \theta^1(1-\theta)^0 = \theta$$

•
$$p(X_t = 0|\theta) = \theta^0(1-\theta)^1 = 1-\theta$$

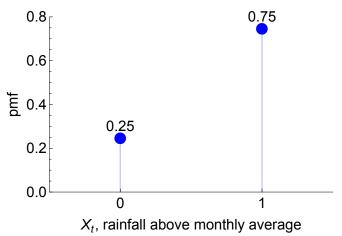
Question: what is the difference between a likelihood and a sampling/probability distribution?

Answer: they are given by the same object, but under different conditions ("the equivalence relation"). Consider a single X_t :

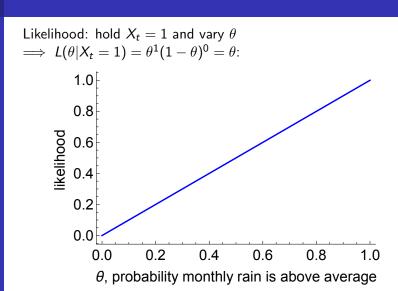
$$L(\theta|X_t) = p(X_t|\theta) \tag{2}$$

- If hold θ constant \Longrightarrow sampling distribution $X_t \sim p(X_t|\theta)$.
- If hold X_t constant \Longrightarrow likelihood distribution $\theta \sim L(\theta|X_t)$.
- In Bayes' rule we vary $\theta \implies$ we use the **likelihood** interpretation.

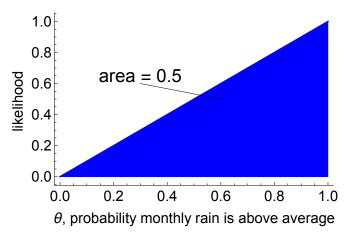
Sampling distribution: hold **parameter** constant, for example $\theta = 0.75$:


$$Pr(X_t = 1 | \theta = 0.75) = 0.75^1 (1 - 0.75)^0 = 0.75$$

 $Pr(X_t = 0 | \theta = 0.75) = 0.75^0 (1 - 0.75)^1 = 0.25$


Likelihood distribution: hold **data** constant for example consider $X_t = 1$:

$$L(\theta|X_t=1) = \theta^1(1-\theta^0) = \theta \tag{3}$$


Therefore here the sampling distribution is **discrete** whereas the likelihood distribution is **continuous**.

Sampling distribution: hold θ constant and vary the data X_t \Longrightarrow valid probability distribution. For example for $\theta = 0.75$:

Likelihood: hold $X_t = 1$ and vary θ . Not a valid probability distribution!

The overall likelihood

Now assuming that we have a series of $X = (X_1, X_2, ..., X_T)$. Question: How do we obtain the full likelihood? By independence:

$$p(X_{1}, X_{2}, ..., X_{T} | \theta) = \theta^{X_{1}} (1 - \theta)^{1 - X_{1}} \times \theta^{X_{2}} (1 - \theta)^{1 - X_{2}} \times ...$$
$$\times \theta^{X_{T}} (1 - \theta)^{1 - X_{T}}$$
$$= \theta^{\sum X_{t}} (1 - \theta)^{T - \sum X_{t}}$$

So if we suppose rain exceeded average in 4/12 months \implies

$$L(\theta|X) = \theta^4 (1 - \theta)^8 \tag{4}$$

Posterior predictive distribution

Defined:

"The probability distribution for a new data sample \tilde{X} given our current data X."

We obtain this by the following recipe:

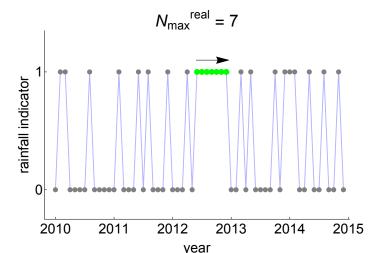
1 Sample a value of θ_i from posterior:

$$\theta_i \sim p(\theta|X)$$
 (5)

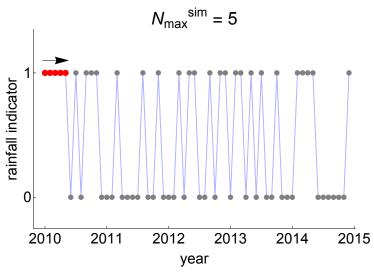
where X is the current data.

② Sample a value of \hat{X}_i from the sampling distribution conditional on θ_i ;

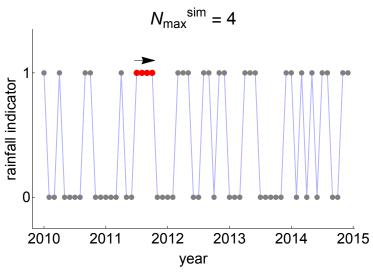
$$\tilde{X}_i \sim p(\tilde{X}|\theta_i)$$
 (6)

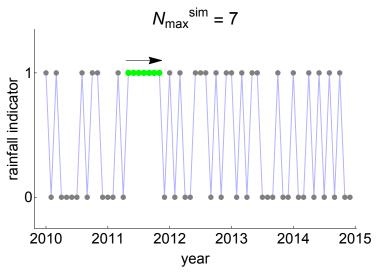

3 Graph histogram of \tilde{X}_i values \implies posterior predictive distribution.

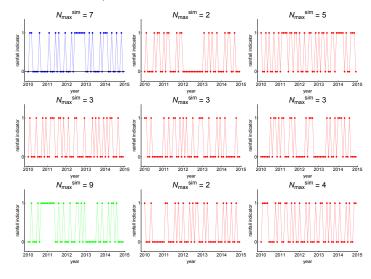
Scenario 1: key question


- Crop yields depend on whether rainfall is persistently above average.
- Key question: does the model allow for sufficient persistence in process?
- **Answer:** find the length of maximum run of consecutive $X_t = 1$ in real data. Then:
 - Draw a sample data series 60 months long from the posterior predictive distribution.
 - Find maximum run of consecutive $X_t=1$ in simulated series.
- Repeat the above steps a number of times.
- Compare real maximum run length with distribution of simulated run lengths.

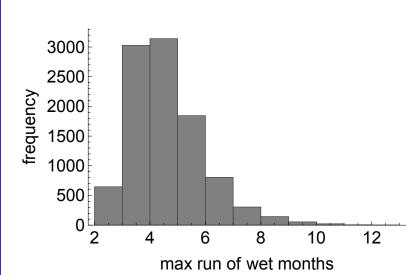
Scenario: maximum length run of wet months in real data


- Start with real data.
- Find maximum run of $X_t = 1$ (rainfall above average).

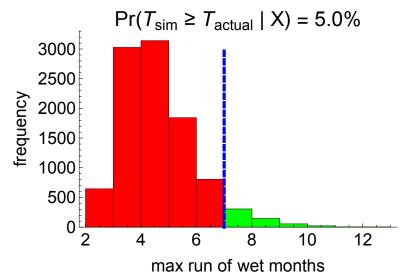

Repeating for data simulated from the posterior predictive.


Another sample.

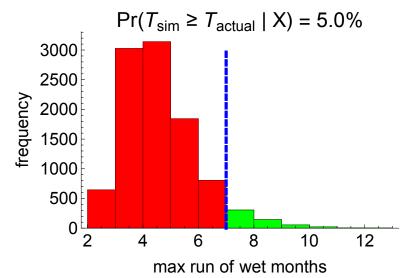
A further sample.



A number of samples.


Scenario: p value

Repeat 10,000 times; each time recording maximum run length.


Scenario: p value

Find percentage of times where simulated exceeds real.

Scenario: p value

Therefore conclude that model is not fit for purpose!

- Model testing through posterior predictive checks
- 2 Why is exact Bayesian statistics hard?
- 3 Attempts to deal with the difficulty
- 4 Sampling

Example problem: paternal discrepancy

- Paternal discrepancy is the term given to a child who has a biological father different to their supposed biological father.
- Question: how common is it?
- Answer: a recent meta-analysis of studies of "paternal discrepancy" (PD) found a rate of $\sim 10\%^1$.
- Suppose we have data for a random sample of 10 children's presence/absence of PD.

Aim: infer the prevalence of PD in the population (θ) .

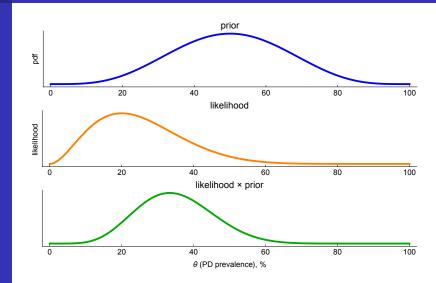
Paternal discrepancy

Assume individual samples are:

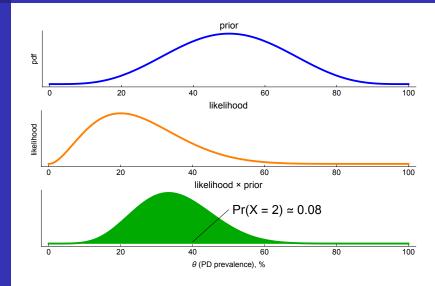
- Independent.
- Identically-distributed.

Since sample size is fixed at $10 \implies$ binomial likelihood.

The denominator revisited


$$p(\theta|X=2) = \frac{p(X=2|\theta) \times p(\theta)}{p(X=2)}$$
(7)

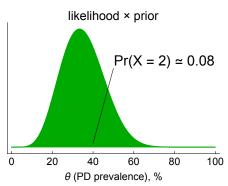
Where we suppose we have data X=2 out of a sample of 10 in our PD example. We obtain the denominator by averaging out all θ dependence. This is equivalent to integrating across all θ :


$$p(X=2) = \int_{0}^{1} p(X=2|\theta) \times p(\theta) d\theta$$
 (8)

(We approximately determined this using sampling previously.)

The denominator as an area

The denominator as an area



Calculating the denominator in 1 dimension

For our PD example there is a single parameter $\theta \implies$

$$p(X=2) = \int_{0}^{1} p(X=2|\theta) \times p(\theta) d\theta$$
 (9)

This is equivalent to working out an area under a curve.

Calculating the denominator in 2 dimensions

If we considered a different model where there were two parameters $\theta_1 \in (0,1), \ \theta_2 \in (0,1) \implies$:

$$p(X=2) = \int_{0}^{1} \int_{0}^{1} p(X=2|\theta_{1},\theta_{2}) \times p(\theta_{1},\theta_{2}) d\theta_{1} d\theta_{2}$$
 (10)

This is equivalent to working out a **volume** contained within a surface.

Calculating the denominator in *d* dimensions

If we considered a different model where there were d parameters $(\theta_1,...,\theta_d)$ all defined to lie between 0 and 1 \Longrightarrow :

$$p(X=2) = \int_{0}^{1} \dots \int_{0}^{1} p(X=2|\theta_{1}, \dots, \theta_{d}) \times p(\theta_{1}, \dots, \theta_{d}) d\theta_{1} \dots d\theta_{d}$$
(11)

This is equivalent to working out a (d+1)-dimensional **volume** contained within a d-dimensional (hyper-surface)!

The difficult denominator

- Calculating the denominator possible for $d < \sim 3$ using computers.
- Numerical quadrature and many other approximate schemes struggle for larger *d*.
- Many models have thousands of parameters.

Arrrghhh!

Other difficult integrals

Assume we can calculate posterior:

$$p(\theta|X) = \frac{p(X|\theta) \times p(\theta)}{p(X)}$$
 (12)

Typically we want summary measures of posterior, for example, the mean of θ_1 :

$$E(\theta_1|X) = \int_{\Theta_1} \theta_1 \left[\int_{\Theta_2} ... \int_{\Theta_d} p(\theta_1, \theta_2, ..., \theta_d|X) d\theta_d ... d\theta_2 \right] d\theta_1$$
$$= \int_{\Theta_1} \theta_1 p(\theta_1|X) d\theta_1$$

Nearly as difficult as denominator!

- Model testing through posterior predictive checks
- 2 Why is exact Bayesian statistics hard?
- 3 Attempts to deal with the difficulty
- Sampling

What are conjugate priors?

Judicious choice of prior and likelihood can make posterior calculation trivial.

- Choose a likelihood L.
- Choose a prior $\theta \sim f \in F$, where:
 - F is a family of distributions.
 - f is a member of that **same** family.
- If posterior, $\theta | X \sim f' \in F \implies$ conjugate!
- In other words both the prior and posterior are members of the same distribution!

Conjugate priors: PD example revisited

Sample 10 children and count number (X) with PD:

• For likelihood (if independent and identically-distributed):

$$X \sim Binomial(10, \theta) \implies p(X|\theta) \propto \theta^X (1-\theta)^{10-X}$$
 (13)

• For prior assume a Beta distribution (a reasonable choice if $\theta \in (0,1)$):

$$\theta \sim Beta(\alpha, \beta) \implies p(\theta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$
 (14)

Numerator of Bayes' rule for inference:

$$p(X|\theta) \times p(\theta) \propto \theta^X (1-\theta)^{10-X} \times \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
 (15)

Conjugate priors: PD example revisited

• Numerator of Bayes' rule for inference:

$$p(X|\theta) \times p(\theta) \propto \theta^{X} (1-\theta)^{10-X} \times \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
$$= \theta^{X+\alpha-1} (1-\theta)^{10-X+\beta-1}$$

- This has same θ -dependence as a $Beta(X + \alpha, 10 X + \beta)$ density \implies must be this distribution!
- ... a Beta prior is *conjugate* to a Binomial likelihood.

Table of common conjugate pairs of likelihoods and priors

No need to do any integrals! Just lookup rules:

Likelihood	Prior	Posterior
Bernoulli	$Beta(\alpha,\beta)$	$Beta(\alpha + \sum_{i=1}^n X_i, \beta + n - \sum_{i=1}^n X_i)$
Binomial	$Beta(\alpha,\beta)$	Beta $(\alpha + \sum_{i=1}^{n} X_i, \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} X_i)$
Poisson	$Gamma(\alpha,\beta)$	Gamma $(\alpha + \sum_{i=1}^{n} X_i, \beta + n)$
Multinomial	$Dirichlet(\alpha)$	$Dirichlet(\alpha + \sum\limits_{i=1}^{n} m{X}_i)$
Normal	Normal-inν-Γ	Normal-inv- Γ

Limits of conjugate modelling

Using conjugate priors is limiting because:

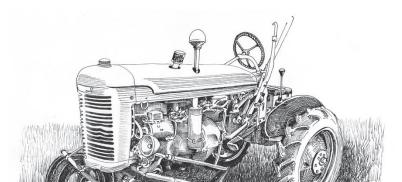
- Often restricted to univariate problems.
 - ⇒ we could just use numerical quadrature instead.

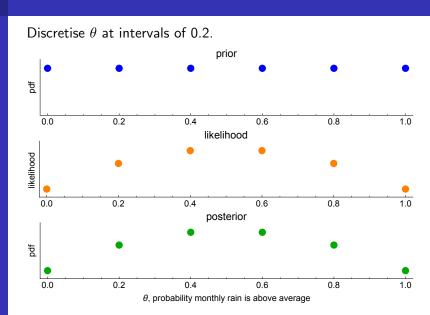
Another solution: discrete Bayes' rule

- To calculate the denominator we need to do an integral, if parameters are continuous.

$$p(X) = \sum_{i=1}^{p} p(X|\theta_i) \times p(\theta_i)$$
 (16)

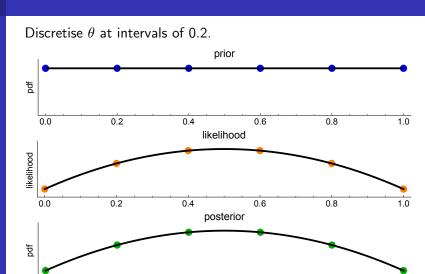
- In general this sum is more tractable than an integral.
- **Question:** can we use this to help us with continuous parameter problems?




Discretised Bayesian inference

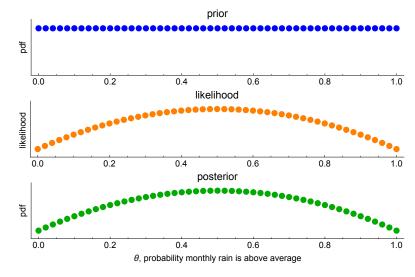
Method:

- Convert **continuous** parameter into *k* **discrete** values.
- Use discrete version of Bayes' rule.
- As $k \to \infty$ discrete posterior \to true posterior.

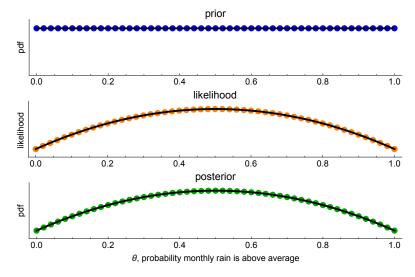

- X_t measures whether rainfall exceeds long term monthly average.
- Suppose $X_t = 1$ and $X_{t+1} = 0$.
- Assumed $p(X_t = 1, X_{t+1} = 0 | \theta) = \theta(1 \theta)$; i.e. likelihood.
- Also assume $p(\theta) = 1$; i.e. the prior.
- Discretise $\theta \in (0,1) \rightarrow (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)$.

0.0

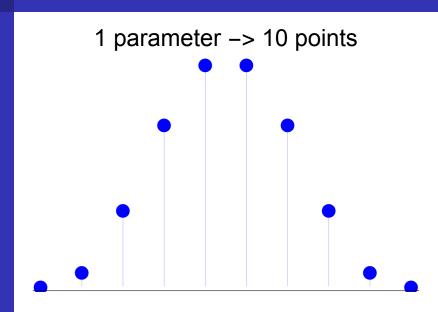
0.2

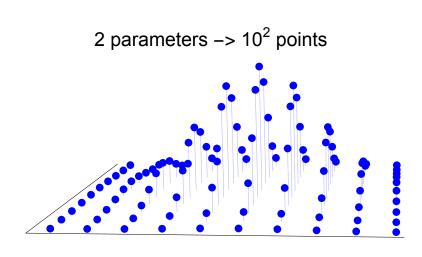

0.4

0.6


 θ , probability monthly rain is above average

0.8


Discretise θ at intervals of 0.02.


Discretise θ at intervals of 0.02.

The problem with discretised Bayes

The problem with discretised Bayes

The problem with discretised Bayes and numerical quadrature

Question: how many grid points do we need for a 20-parameter model?

Answer: $10^{20} = 100,000,000,000,000,000,000$ grid points :: impossible!

Same goes for other methods that makes Bayesian inference discrete, for example **numerical quadrature**.

The problem of aforementioned methods: summary

- Bayesian inference requires us to difficult integrals; both for the denominator and posterior summaries.
- Conjugate priors are too simple for most real life examples.
- Another method is to approximate integrals by discretising them into sums.
- Method works ok for models with a few parameters.
- **But** doesn't scale well for models with more than about 3 parameters (curse of dimensionality).
- **Question:** can we find a method whose complexity is independent of the # of parameters?

- Model testing through posterior predictive checks
- 2 Why is exact Bayesian statistics hard?
- 3 Attempts to deal with the difficulty
- 4 Sampling

Black box die

- Black box containing a die with an unknown number of faces, and weightings towards sides.
- Shake the box and view the number that lands face up through a viewing window.
- Note: an individual shake represents one sample from the probability distribution of the die.

Black box die: estimating mean

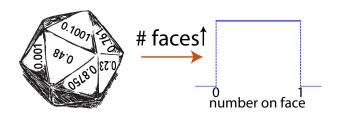
- Question: How can we estimate the die's mean?
- Answer: shake it off! Then calculate the overall mean across all shakes.

Computational die in a box: results

Black box die: sampling to estimate a sum

• Mean of a **sample** of size *n* is:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{17}$$


• Whereas the true mean of the die is given by:

$$E(X) = \sum_{j=1}^{\# \text{ faces}} Pr(X_j = x_j) \times x_j$$
 (18)

• For a sample size of $<\sim$ 1000 we were able to estimate:

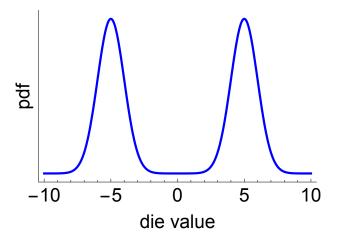
$$\overline{X} \approx \mathrm{E}(X)$$
 (19)

An infinitely-sided die as a continuous distribution

- Imagine increasing the number of faces to infinity (a strange die indeed).
- Each face corresponds to one real number between 0 and 1.
- All possible numbers between 0 and 1 are covered.
- Basically like a continuous uniform distribution between 0 and 1.

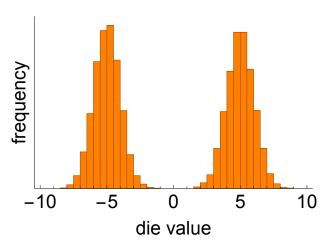
An infinitely-sided die

 However its mean is now given by an integral rather than a sum.

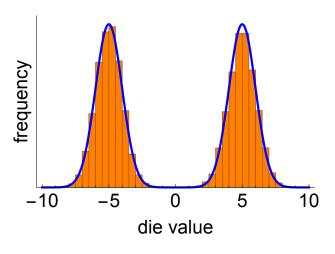

$$E(X) = \int_{\text{all faces}} p(X) \times X dX$$
 (20)

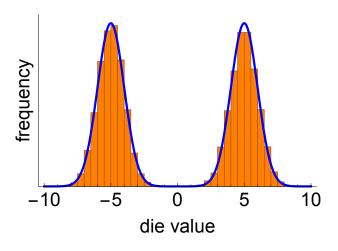
- Question: can still estimate its true mean by the sample mean?
- If so this amounts to estimating the above integral!

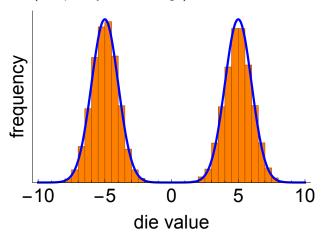
Continuous distribution sampling


A stranger distribution

- Method seems to work for continuous uniform distribution.
- Question: does it work for other distributions?




Compare samples...


...with actual distribution \implies same shape!

Therefore sample properties \rightarrow actual properties.

Note: nowhere have we explicitly mentioned the parameter dimension (complexity-free scaling?).

What is an independent sample?

- Aforementioned methods require us to generate independent samples from the distribution.
- Question: what is an independent sample?
- Answer: a value drawn from the distribution whose value is unconnected to other samples (apart from their joint reliance on the distribution.)

How to generate independent samples?

- By definition using independent sampling to estimate integrals requires us to be able to generate independent samples: $\theta_i \sim p(\theta)$.
- Not as simple as might first appear.
- Most statistical software has inbuilt ability to generate (pseudo-)independent samples for a few basic distributions: uniform, normal, poisson etc.
- However, for more complex distributions it is not trivial to create an independent sampler.

Summary

- Posterior is a weighted average of prior and likelihood, where weight of likelihood determined by amount of data.
- Posterior predictive distributions show implications of the posterior on the observable world.
- Exact Bayes is hard due to difficulty of calculating posterior, and other high dimensional integrals.
- Conjugate priors can make analysis simpler, although are highly restrictive.
- Discretisation can work for low dimensional problems but cannot cope with more complex models.
- Independent sampling can help to estimate integrals but can be hard to do in practice (see problem set).