Lecture 3: an introduction to MCMC

Ben Lambert¹ ben.c.lambert@gmail.com

¹Imperial College London

Tuesday 5th March, 2019

Lecture outcomes

- Appreciate how sampling can be used to gain insight into a distribution.
- Grasp how dependent sampling via MCMC allows sampling from the posterior.
- Understand the mechanics of Random Walk Metropolis and how it works intuitively.
- Know that judging convergence of chains to the posterior is hard.
- See able to formulate the statistical inverse problem for ODEs.
- Mow what meant by ABC and when to use it.

- 1 Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- 3 Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- **(5)** Ordinary differential equations
- 6 Approximate Bayesian computation

What is (independent) sampling and how can it give insight to distributions?

- Suppose we have a large (infinite) urn filled with coloured balls.
- The number of colours and the frequencies of each are unknown.
- Question: how can we determine the underlying probability distribution of ball colour?

What is (independent) sampling and how can it give insight to distributions?

Answer: we draw lots of balls from the urn and count the **sampled** frequencies!

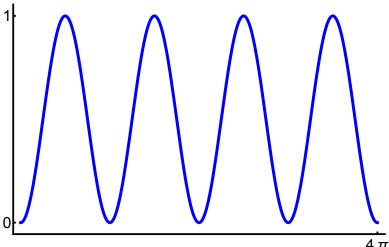
What is (independent) sampling and how can it give insight to distributions?

- Drawing one ball from the urn is the act of taking a single sample.
- If the balls in the urn are swishing about then the colour of the next ball does not depend on the current ball's colour.
- Here the samples are (conditionally-) **independent**.
- Independent sampling gives us a very efficient way of gaining insight into a distribution.

Sampling from a continuous distribution

- Suppose we have a large (infinite) urn filled with balls of differing sizes.
- The distribution of sizes is **unknown**.
- Question: can we use same method to determine the underlying probability distribution of ball size? Answer: yes!

Question: how can we generate independent samples from the following (un-normalised) PDF?

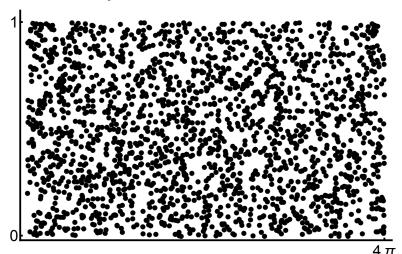


Answer: do the following a large number of times:

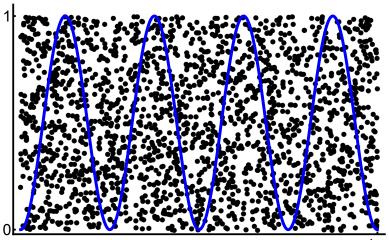
- Generate **x** coordinates: uniformly-distributed points from $(0, 4\pi)$; where 4π is the domain of the function.
- ② Generate \mathbf{y} coordinates: uniformly-distributed points from (0,1); where 1 is the maximum value of the function.
- **3** If y < p(x), then **accept** x coordinate as a sample.
- If $y \ge p(x)$, then **reject** x coordinate as a sample.

Known as **Rejection** sampling.

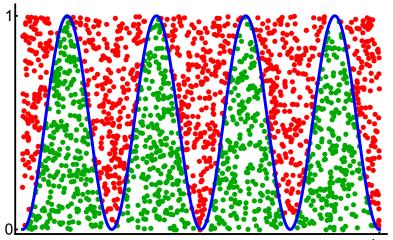
Generate \mathbf{x} and \mathbf{y} coordinates.



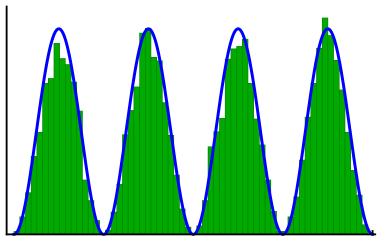
Overlay pdf.



Accept **x** coordinates as samples if y < p(x).



The resultant samples.



Why do sampling in the first place?

Typically we want to calculate the posterior mean of some parameter, θ_1 :

$$E(\theta_{1}|X) = \int_{\Theta_{1}} \int_{\Theta_{-1}} \theta_{1} \times \rho(\theta_{1}, \theta_{-1}|X) d\theta_{-1} d\theta_{1}$$
$$= \int_{\Theta_{1}} \theta_{1} \times \rho(\theta_{1}|X) d\theta_{1}$$

where $heta_{-1}$ corresponds to the d-1 other parameters of the model.

This integral (the top line) is just too difficult to calculate exactly for all but the simplest models \implies we instead use sampling to approximate it!

Why is generating independent samples difficult?

- Rejection sampling requires generation of a large number of random points to produce relatively few samples.
- This inefficiency increases (exponentially) with the dimensionality of the distribution; i.e. for posteriors with more parameters.
- Other methods exist (inverse-transform sampling and importance sampling, for example) but they suffer from complexity and/or inefficiency issues.
- We cannot calculate the denominator so are unable to use some of these methods.
- Even if we had the denominator the complexity of most models means that independent sampling isn't possible.

Is sampling finished?

- 1 Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- 3 Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- **(5)** Ordinary differential equations
- 6 Approximate Bayesian computation

What is dependent sampling?

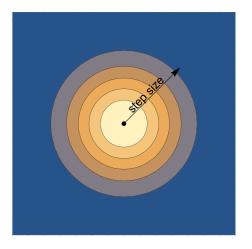
Definition:

"A sampling algorithm where the next sample **depends** on the current value."

And the list of all (accepted) positions of the sampler form the sample.

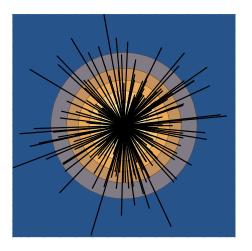
Example dependent sampler: choose a new position based on a local "jumping" distribution

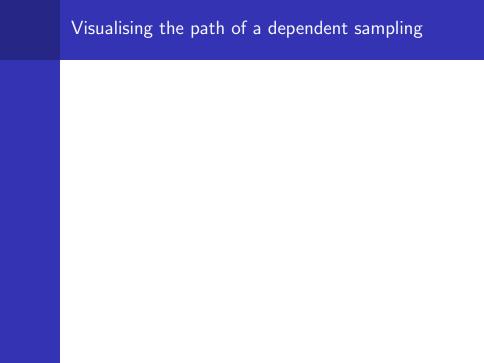
Suppose the next value of the sampler is drawn from a 2d normal distribution centred on our current position.



Example dependent sampler: next steps

Showing 200 example steps.





Dependent samplers as Markov Chains (Monte Carlo)

- Where to step next is determined via a distribution conditional on the current parameter value.
- This stepping is probabilistic \implies *Monte Carlo*.
- The conditional distribution only depends on the current value of the sampler meaning it is memoryless about past path.
- This memoryless means that the path of the sampler is a 1st order Markov Chain.

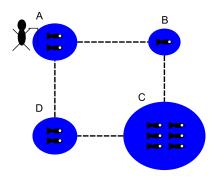
Open questions

How can we decide on the:

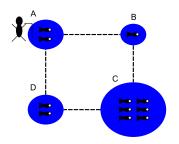
- Starting position.
- Jumping distribution's shape.

To ensure convergence to the posterior distribution? Especially because we cannot compute the posterior itself!

- Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- Ordinary differential equations
- 6 Approximate Bayesian computation



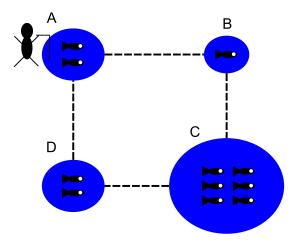
- David Robinson (a more fortunate cousin of Robinson Crusoe) is marooned on an island.
- Access to four freshwater lakes of different sizes; each with a supply of fish.



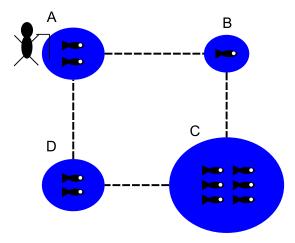
- Robinson does not know the amount of fish in each lake.
- He also does not know the number of lakes!
- However, the amount of fish in each lake is proportionate to its area.
- From a particular lake he can see the two adjoining lakes, and can estimate their area.

- He has a terrible memory (too much coconut toddy), and each day forgets any estimates of lake size he made previously.
- He wants to fish (at maximum) one new lake per day.
- He possesses a coin and a solar-powered calculator that can generate (pseudo-)random numbers uniformly distributed between 0 and 1.
- He is initially "washed up" next to lake A.

• **Question:** What strategy should he use to fish as sustainably as possible?

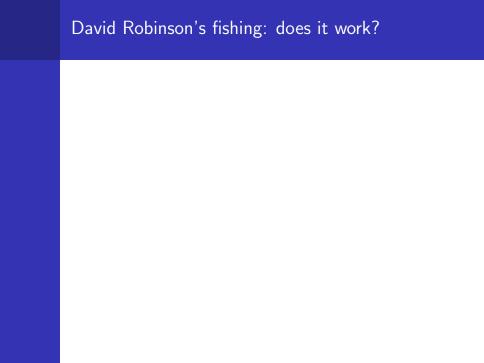


 Remember: Robinson doesn't know the # of lakes, nor the amount of fish in each!



Answer: visit each lake in proportion to the fish it contains, by doing the following:

- Each night he flips the coin.
- If it's heads (tails) he proposes a move to the neighbouring lake in the clockwise (anticlockwise) direction.
- Calculates the ratio of the size of the proposed lake to the current one.
- Compares the ratio with a (pseudo-)random number from the calculator.
- If the ratio exceeds the generated number, he moves. If not, he stays put and fishes the same lake tomorrow.



David Robinson's fishing: summary

- Robinson lacked knowledge of numbers of fish in each lake and the number of lakes.
- Knows that the number of fish in each lake is proportionate to its size.
- His memory stops him remembering the exact sizes.
- Each night he flips a coin; heads (tails)

 consider clockwise (anticlockwise) neighbouring lake.
- Estimates ratio of size of selected lake to current one.
- If ratio exceeds a uniform random number he moves. If not he stays where he is.
- After about 100 days his "random" strategy is quite similar from an "omniscient" one.

Defining Random Walk Metropolis

Robinson's strategy is an example of the "Random Walk Metropolis" algorithm. This has the following form:

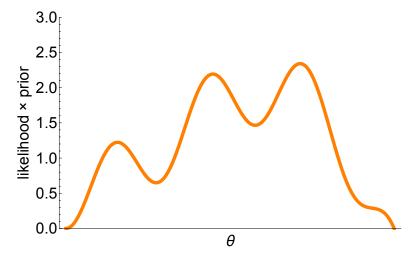
- Generate a random starting location θ_0 .
- Iterate the following for t = 1, ..., T:
 - Propose a new location from a jumping distribution: $\theta_{t+1} \sim J(\theta_{t+1}|\theta_t)$.
 - Calculate the ratio:

$$r = \frac{\mathsf{likelihood}(\theta_{t+1}) \times \mathsf{prior}(\theta_{t+1})}{\mathsf{likelihood}(\theta_t) \times \mathsf{prior}(\theta_t)} \tag{1}$$

- Compare r with a uniformly-distributed number u between 0 and 1.
- If $r \ge u \implies$ we move.
- Otherwise, we remain at our current position.

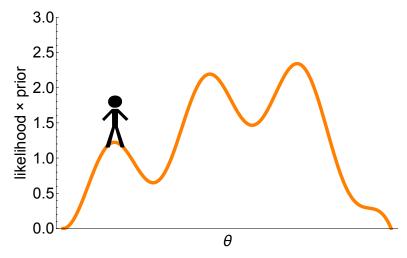
Defining Random Walk Metropolis

Start with the un-normalised density.

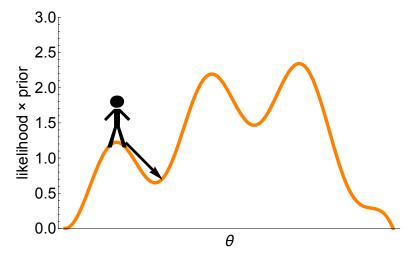


Defining Random Walk Metropolis

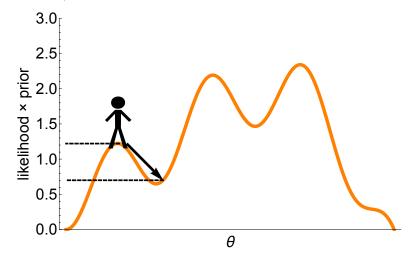
Select a random starting location.



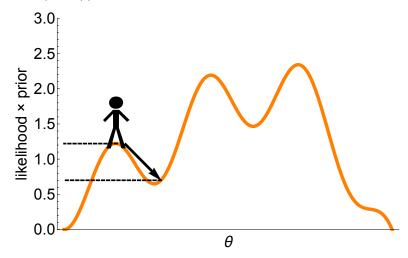
Propose a new location using jumping distribution.



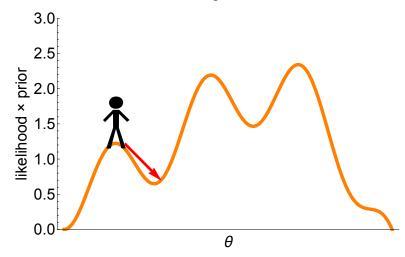
Calculate ratio of likelihood \times prior at proposed to current location, and find $r \approx 0.58$.



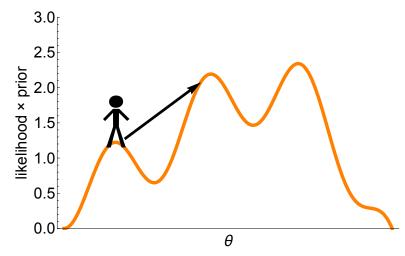
Compare $r \approx 0.58$ with random real between 0 and 1. For example suppose we obtain u = 0.823.



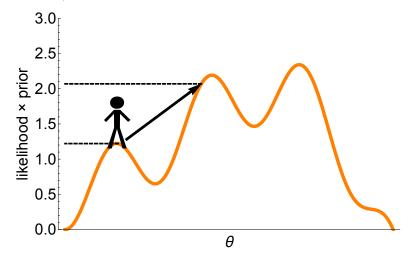
Since r < u we remain at our original location.



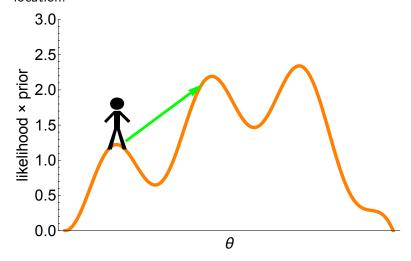
Generate a new proposed step using jumping distribution.



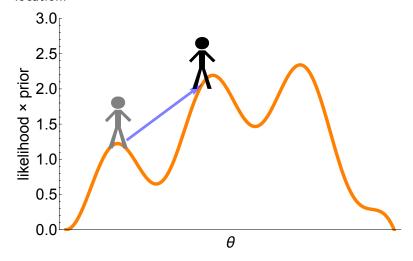
Calculate ratio of likelihood \times prior at proposed to current location, and find $r \approx 1.75$.



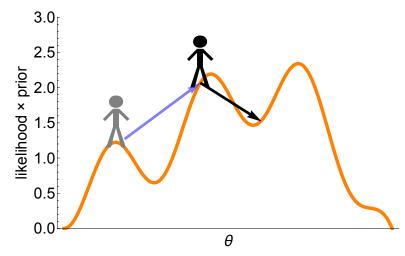
Since r > 1 (maximum possible u) \implies we move to new location.

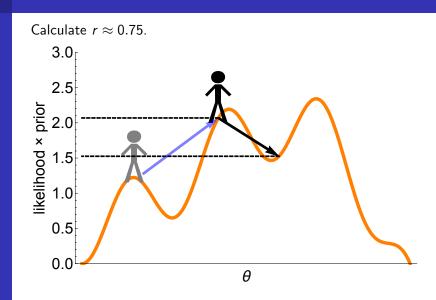


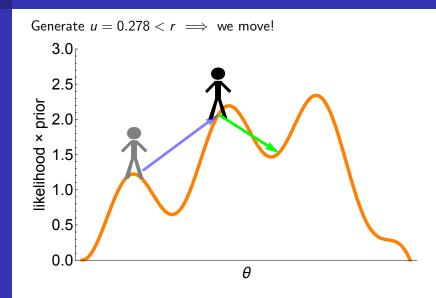
Since r > 1 (maximum possible u) \implies we move to new location.

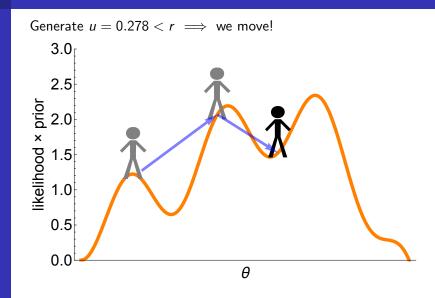


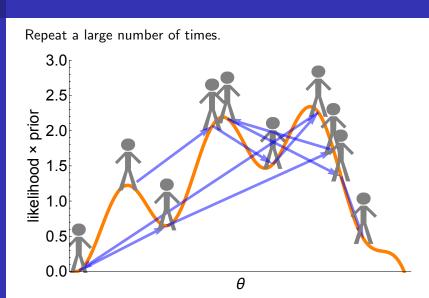
Propose a new step using jumping distribution.











Random Walk Metropolis: benefits

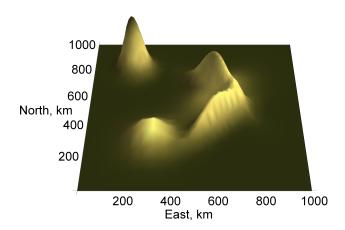
- Under quite general conditions the Random Walk Metropolis sampler converges asymptotically to the posterior.
- However for a sufficiently large sample size the sampling distribution may be practically indistinguishable from the true posterior.
- The algorithm requires us to be able to calculate the ratio:

$$r = \frac{\mathsf{likelihood}(\theta_{t+1}) \times \mathsf{prior}(\theta_{t+1})}{\mathsf{likelihood}(\theta_t) \times \mathsf{prior}(\theta_t)} \tag{2}$$

 The ratio uses only the numerator of Bayes' rule ⇒ we side-step calculating the denominator!

Random Walk Metropolis in action

Can we use Random Walk Metropolis to sample from the continuous distribution below?



Random Walk Metropolis: short summary

- Algorithm works by starting in a randomly-determined position in parameter space.
- In each iteration we generate a proposed (local) step from our current position.
- We then move based the ratio of the proposed un-normalised posterior to our current location need to calculate troublesome denominator.
- The path of our positions over time forms our **sample**.
- If we repeat the above for a (large) number of steps \implies sampling distribution \approx posterior.
- **Question:** what's the function of the accept/reject rule we use in the Metropolis algorithm?

The importance of the accept/reject rule

Let's try out three different accept/reject rules to see how they fare.

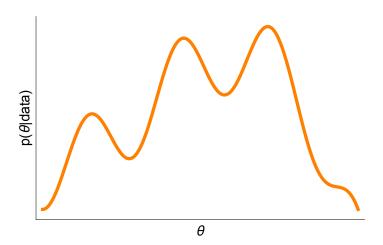
- Drunkard's rule: we always move irrespective of value of un-normalised density at new location versus current position.
- Edmund Hilary's rule: calculate

$$r = \frac{p(X|\theta_{t+1})p(\theta_{t+1})}{p(X|\theta_t)p(\theta_t)}$$
(3)

- If r > 1 we move; otherwise don't.
- Metropolis rule:
 - If $r > u \sim Unif(0,1)$, then move to new location.
 - Otherwise stay in current position.

An example un-normalised posterior

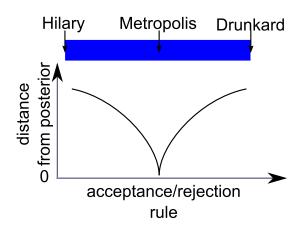
Start with the below distribution and try each different stepping rule.



Drunkard's walk

Hilary's ascent

Accept reject rule: summary



Only the Metropolis accept/reject rule allows sampling from each point in exact proportion to the posterior height.

The intuition behind Random Walk Metropolis

Consider the ratio of the posterior density at point θ_{t+1} to θ_t :

$$r = \frac{p(\theta_{t+1}|X)}{p(\theta_t|X)}$$

$$= \frac{\frac{p(X|\theta_{t+1})p(\theta_{t+1})}{p(X)}}{\frac{p(X|\theta_t)p(\theta_t)}{p(X)}}$$

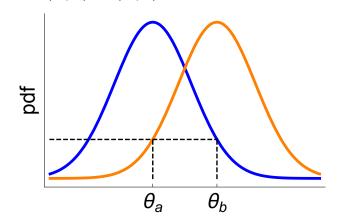
$$= \frac{p(X|\theta_{t+1})p(\theta_{t+1})}{p(X|\theta_t)p(\theta_t)}$$

So the ratio of the numerators of Bayes' rule is **identical** to the ratio of the actual posteriors.

 \implies if we use r to guide our stepping we will be sampling (eventually) from the posterior.

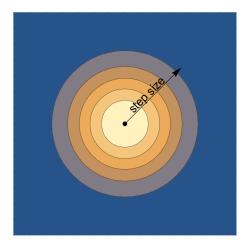
How do we choose the jumping distribution?

- Sometimes called the "proposal distribution".
- In Random Walk Metropolis we use a symmetric distribution (relaxed in Metropolis-Hastings): $\implies J(\theta_a|\theta_b) = J(\theta_b|\theta_a)$



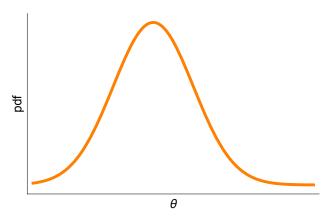
The importance of step size

Question: how should we decide on the jumping kernel's step size?



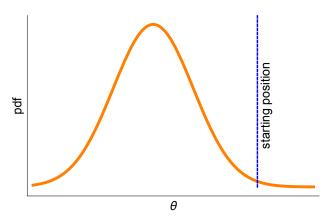
Another example posterior distribution

Assume a unimodal distribution from which we want to sample.



Another example posterior distribution

Start three algorithms with different step sizes at same point.



Step size: summary

- Whilst step size does not affect asymptotic convergence, it does affect finite sample performance.
- If step size is too small we do not find the typical set (area of high probability mass).
- If step size is too large we find the typical set, but do not explore it efficiently.
- Therefore do an initial run of sampler to find optimal step size before starting proper.

- Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- 3 Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- **(5)** Ordinary differential equations
- 6 Approximate Bayesian computation

What do we mean by convergence?

Recap the steps of Metropolis:

- Propose an initial position θ_0 using a initial proposal distribution $\pi(\theta) \neq p(\theta|X)$.
- ② For t = 1, ..., T do:
 - Propose a new location: $\theta_{t+1} \sim J(\theta_{t+1}|\theta_t)$.
 - Accept/reject move based on

$$r = \frac{p(X|\theta_{t+1})p(\theta_{t+1})}{p(X|\theta_t)p(\theta_t)} > u \sim \textit{Unif}(0,1) \tag{4}$$

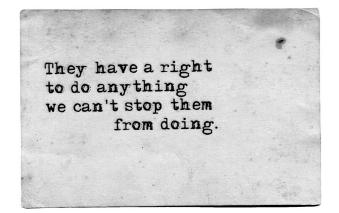
What do we mean by convergence?

Figure: Adapted from Betancourt lecture: www.youtube.com/watch?v=pHsuIaPbNbY.

Why do we need to monitor convergence?

- Start with an initial proposal distribution $\pi(\theta) \neq p(\theta|X)$.
- Repeatedly take steps and use the Metropolis accept/reject rule $\implies \pi(\theta_t)$; the sampling distribution at time t.
- Under a set of quite general assumptions we are guaranteed that asymptotically: $\pi(\theta_t) \to p(\theta|X)$.
- However, when practically can we assume: $\pi(\theta_t) \approx p(\theta|X)$?

How to measure convergence?



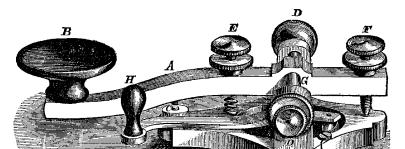
Two strategies for monitoring convergence

Strategy 1: measure distributional separation.

• For example Kullback-Leibler:

$$KL = \int p(\theta|X) log\left(\frac{p(\theta|X)}{\pi(\theta_t)}\right) d\theta$$
 (5)

- Motivated by information theory.
- Can use un-normalised posterior to do this.
- Again integral is too difficult to do.



Two strategies for monitoring convergence

Strategy 2: monitor the approach to a stationary distribution.

- We know asymptotically this will happen.
- By design of Metropolis stepping and accept/reject rules, we know the stationary distribution is the posterior.

Monitoring convergence of a single chain

Initial idea:

- Compare summaries (mean, variance, etc.) of sampling distribution for a chain at time t with itself at time t + T.
- If their rate of change is below a threshold convergence.

Monitoring convergence of a single chain

Question: What is the problem with this idea?

Convergence monitoring: Bob's bees

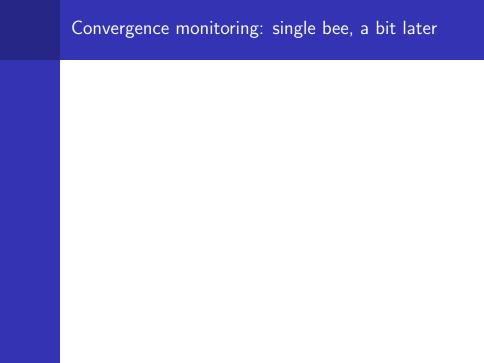
Thought experiment:

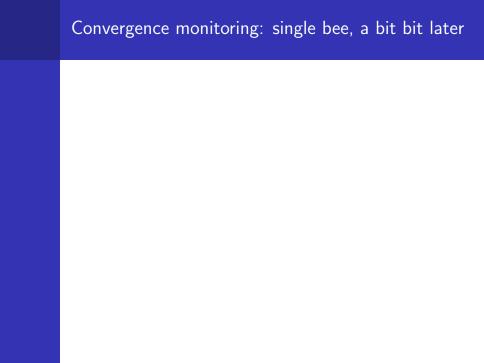
- Imagine a house of unknown shape.
- We have an unlimited supply of bees, each equipped with a GPS tracker allowing us to accurately monitor their position.
- Question: How can we use these to estimate the shape of the house?

Convergence monitoring: Bob's bees

Answer:

- Release one (at a random location in the house) and monitor its path over time.
- Stop/collect bee after summary measures of its path stop changing.





Convergence monitoring: single bee

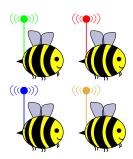
Question: what's the actual shape of the house?

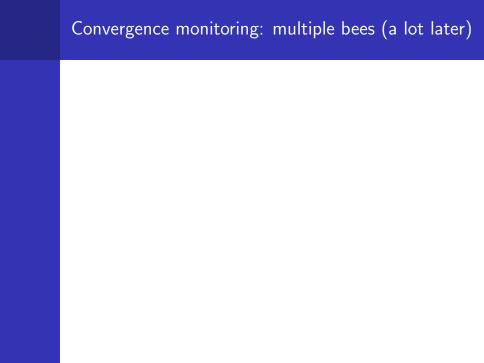
Single chain problems: summary

- One way to monitor convergence is to look for convergence in a single chain's summary statistics.
- This method is very susceptible to the curse of hindsight problem ("Now we've definitely converged on the posterior. We hadn't a minute ago.")
- Particularly because chains often get stuck in subregions of θ space.

The solutions: lots of bees

- Release lots of bees starting at dispersed locations in parameter space.
- Stop recording when an individual bee's path is indistinguishable from all others'.





Multiple chain convergence monitoring: summary

- Start a number of chains in random dispersed locations in θ space.
- Chains do not interact with one another (in Metropolis).
- Run each sampler until it is hard to distinguish one chain's path from all others'.
- Less susceptible to "curse of hindsight", since we can see if chains aren't mixing.
- Not foolproof! There still may be an area of high probability mass that we miss. However, less likely to fail compared to a single chain.
- The more chains, the better!

Single bee in a house.

Multiple bees in a house released in a single room.

Question: have we converged?

Multiple bees in new house released in highly dispersed rooms.

Multiple bees in new house released in highly dispersed rooms...much later.

Multiple chain convergence monitoring: open questions

- How to determine "random dispersed locations" at which to start the chains?
 - Ideally use an initial proposal distribution similar to posterior shape.
 - Otherwise a good rule of thumb is "Any point you don't mind having in a sample is a good starting point", Charles Geyer.
- Which summary statistics to monitor to determine convergence?
- At what threshold are "between chain" statistics sufficiently similar?

Gelman and Rubin's \hat{R}

- Gelman and Rubin (1992) had the idea of comparing within-chain to between-chain variability.
- They quantified this comparison using:

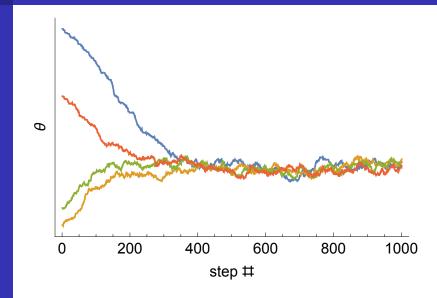
$$\hat{R} = \sqrt{\frac{W + \frac{1}{n}(B - W)}{W}} \tag{6}$$

- Where "within-chain" variability, $W = \frac{1}{m} \sum_{j=1}^{m} s_j^2$, for m chains.
- And "between-chain" variability, $B = \frac{n}{m-1} \sum_{i=1}^{m} (\overline{\theta}_i \overline{\theta})^2$.
- When we start B >> W since we start in an overdispersed position.
- In convergence $B \to W \implies \hat{R} \to 1$ (in practice $\hat{R} < 1.1$ usually suffices).

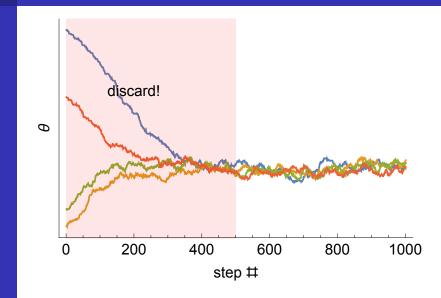
Warm up period

- The initial proposal distribution is *not* the posterior.
- We therefore discard the beginning part of the chain called the "warm up" to lessen the effect of the starting position.
- Typically discard first half of converged chains (can also cut chains in two to monitor intra-chain convergence).

Warm up period



Warm up period



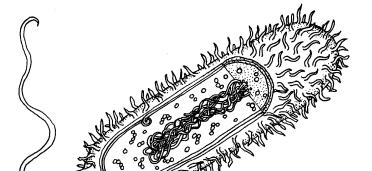
Summary

- Sampling can be used to gain insight into a distribution.
- Independent sampling from posterior not generally possible
 shift to dependent sampling.
- Random Walk Metropolis is a MCMC algorithm that allows dependent sampling from the posterior.
- The efficiency of Metropolis depends on choosing the right step size.
- Monitoring of sampler's convergence to the posterior is non-trivial.
- The use of multiple chains makes it harder to make a mistake although not impossible.

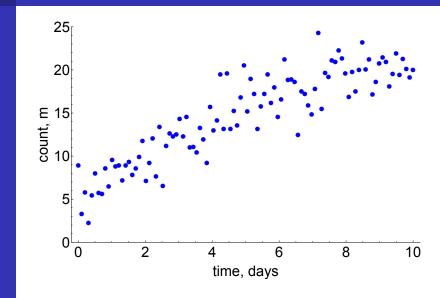
- Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- 3 Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- **5** Ordinary differential equations
- 6 Approximate Bayesian computation

Example: bacterial growth

- We carry out experiments where we inoculate agar plates with bacteria at time 0.
- At pre-defined time intervals we count the number of bacteria on each plate, N(t).
- Suppose we want to model bacterial population growth over time.



Example: bacteria growth data



 Assume the following model for bacterial population growth:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \alpha N(1 - \beta N) \tag{7}$$

where $\alpha>0$ is the rate of growth due to bacterial cell division, and $\beta>0$ measures the reduction in growth rate due to "crowding".

Question: how should we infer the parameters of this model?

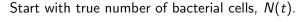
Answer: assume measurement error around true value:

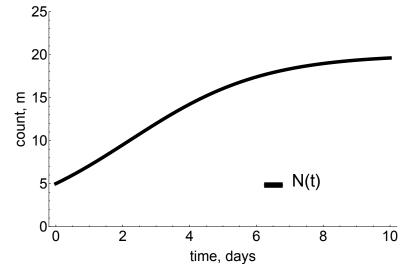
$$N^*(t) \sim \text{normal}(N(t), \sigma)$$
 (8)

where

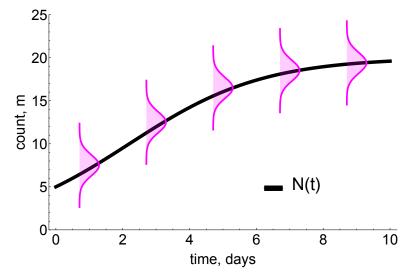
- $N^*(t)$ is the **measured** count of bacteria at time t.
- N(t) is the solution to the ODE at time t (true number of bacteria on plate).
- $\sigma > 0$ measures the magnitude of the measurement error about the true value.

Question: how does this model work?



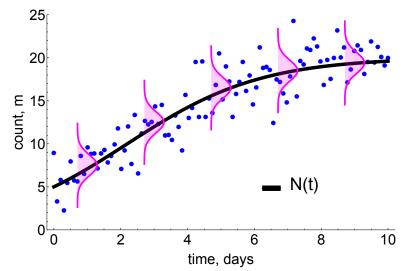


Overlay sampling distribution representing measurement error.



Example: bacterial growth model

And data generated from this process.



Example: bacteria growth model inference

Remember we are using a normal likelihood:

$$N^*(t) \sim \text{normal}(N(t), \sigma)$$
 (9)

⇒ likelihood for all observations:

$$L(N(t), \sigma) = \prod_{t=t_1}^{T} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[\frac{-(N^*(t) - N(t))^2}{2\sigma^2}\right]$$
(10)

Question: how do we calculate N(t)?

Example: bacteria growth model inference

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \alpha N(1 - \beta N) \tag{11}$$

- In most ODE models, the mean N(t) cannot be solved for exactly so we can't write down a "closed-form" expression for the likelihood.
- \implies approximate answer using a numerical method.
- However any solution for N(t) exact or numerical depends on the parameters of the ODE model. For our example:

$$N(t) = f(t, \alpha, \beta) \tag{12}$$

Question: how do we do MCMC in this setting?

Example: bacteria growth model inference

For example, in Random Walk Metropolis:

- Start at random location in (α, β, σ) space.
- For t=1,...,T do:
 - **1** Propose a new location $(\alpha', \beta', \sigma')$ using a jumping distribution.
 - ② Numerically (or analytically) integrate ODE to solve for $N(t, \alpha', \beta')$.
 - Solution States Sta
 - Based on r move to new location or stay at original.

 \implies at every step we must solve ODE for N(t); can be computationally expensive!

Issues with inference for ODEs and PDEs

- (Linked) ODE models can be slower to converge than simpler models \implies need to run MCMC for longer before $\hat{R} < 1.1$ achieved.
- \implies important that we "know" our model well before we start to do inference explicitly.
- Worth putting energy into mathematical analysis before trying MCMC.

Inference for ODEs: summary

- ODE models are no harder to formulate than "traditional" problems.
- However for ODE models we cannot typically write down a "closed-form" expression for the likelihood.
- ⇒ use integrator to numerically solve for mean for each set of parameters.
- Posteriors for ODE models are often of a more complex geometry than regular models and are often unidentified.
- Check out: https://github.com/pints-team/pints for ODE inference.

- 1 Understanding a distribution by sampling from it
- 2 Introducing dependent sampling
- 3 Random Walk Metropolis
- 4 Judging convergence of chains to posterior
- **(5)** Ordinary differential equations
- 6 Approximate Bayesian computation

Intractable likelihood

A class of models have the property that the likelihood is too costly to evaluate exactly,

- Population genetics,
- Evolutionary biology,
- Epidemiology,
- Spatial models (e.g. cellular automata, cellular Potts, CHASTE),
- Models involving stochasticity.

However it may be (relatively) inexpensive to run a model for a given parameter set θ .

Example: stochastic Lotka-Volterra

Predator Y and prey X,

$$X \xrightarrow{c_1} 2X$$
 (13)

$$X + Y \xrightarrow{c_2} 2Y$$
 (14)

$$Y \xrightarrow{c_3} \emptyset$$
 (15)

 \implies can simulate dynamics exactly using the Gillespie algorithm, but difficult to determine $p(X, Y|c_1, c_2, c_3)$.

Basic ABC algorithm

Question: how can we infer (c_1, c_2, c_3) ?

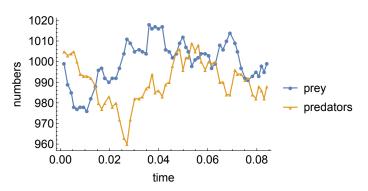
Idea: iterate the following,

- **1** Simulate from algorithm using $(c_1, c_2, c_3) \sim \pi(.)$, the prior.
- Selse reject.

Where T(.) is some type of informative summary statistic. For example, here we might choose the sum of squared errors.

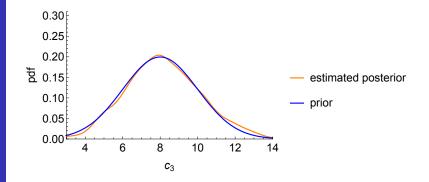
Basic ABC algorithm: the role of ϵ

Test: simulate data from stochastic Lotka-Volterra model where, $(c_1, c_2, c_3) = (10, 0.01, 10)$, and $(X_0, Y_0) = (1000, 1000)$ for T = 0.1.



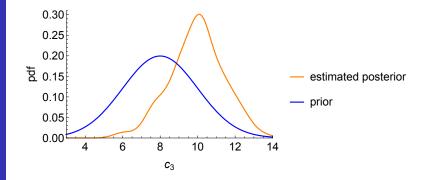
Question: how does choice of ϵ affect posterior?

Basic ABC: high ϵ



quick to run but \implies approximate posterior same as priors!

Basic ABC: low ϵ



slow to run but \implies approximate posterior near true posterior!

ABC: summary

- ABC can be used to estimate approximate posteriors for some models where likelihood is intractable to calculate,
- so long as the time for a simulation is $\mathcal{O}(\text{seconds})$.
- Often useful (and less time intensive) step towards full Bayesian analysis of ODE and PDE models, and can help with questions around model identification.
- For slower simulations, either require large parallelism (e.g. ARCUS) or use more approximate methods (e.g. surrogate models).

Not sure I understand?

Hierarchy of samplers:

MC:

MCMC:

Not sure I understand?

MC ?:

